Advertisement

Algebraic Geometry Codes from Order Domains

  • Olav Geil
Chapter

Abstract

In this tutorial we introduce order domains and study the related codes. Special attention is given to the one-point geometric Goppa codes. We show how Gröbner basis theory helps us constructing order domains as well as helps us dealing with the related codes.

Keywords

Weight Function Numerical Semigroup Order Function Dual Code Rational Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. E. Andersen, On puncturing of codes from norm-trace curves, Finite Fields Appl. 13 (2007), no. 1, 136–157. MathSciNetzbMATHCrossRefGoogle Scholar
  2. H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl. 14 (2008), 92–123. MathSciNetzbMATHCrossRefGoogle Scholar
  3. D. Augot, E. Betti and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68. Google Scholar
  4. P. Beelen, The order bound for general algebraic geometric codes, Finite Fields Appl. 13 (2007), no. 3, 655–680. MathSciNetCrossRefGoogle Scholar
  5. M. Bras-Amorós and M. E. O’Sullivan, The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting, AAECC 17 (2006), no. 5, 315–335. zbMATHCrossRefGoogle Scholar
  6. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965. Google Scholar
  7. B. Buchberger, Gröbner-bases: An algorithmic method in polynomial ideal theory, Multidimensional systems theory, Reidel, Dordrecht, 1985, pp. 184–232. CrossRefGoogle Scholar
  8. B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), nos. 3–4, 475–511. MathSciNetzbMATHCrossRefGoogle Scholar
  9. J. Fitzgerald and R. F. Lax, Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr. 13 (1998), no. 2, 147–158. MathSciNetzbMATHCrossRefGoogle Scholar
  10. O. Geil, On codes from norm-trace curves, Finite Fields Appl. 9 (2003), 351–371. MathSciNetzbMATHCrossRefGoogle Scholar
  11. O. Geil and T. Høholdt, On hyperbolic codes, LNCS, vol. 2227, Springer, Berlin, 2001, pp. 159–171. Google Scholar
  12. O. Geil and R. Matsumoto, Generalized Sudan’s list decoding for order domain codes, Proc. of AAECC2007, 2007, pp. 50–59. Google Scholar
  13. O. Geil and R. Pellikaan, On the structure of order domains, Finite Fields Appl. 8 (2002), 369–396. MathSciNetzbMATHCrossRefGoogle Scholar
  14. O. Geil and C. Thommesen, On the Feng–Rao bound for generalized Hamming weights, LNCS, vol. 3857, Springer, Berlin, 2006, pp. 295–306. Google Scholar
  15. P. Heijnen and R. Pellikaan, Generalized Hamming weights of q -ary Reed–Muller codes, IEEE Trans. on Inf. Th. 44 (1998), no. 1, 181–196. MathSciNetzbMATHCrossRefGoogle Scholar
  16. T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, Handbook of coding theory (V. S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, pp. 871–961. Google Scholar
  17. D. A. Leonard, A tutorial on AG code construction from a Gröbner basis perspective, this volume, 2009, pp. 93–106. Google Scholar
  18. J. B. Little, The ubiquity of order domains for the construction of error control codes, Adv. Math. Commun. 1 (2007), no. 1, 151–171. MathSciNetzbMATHCrossRefGoogle Scholar
  19. J. B. Little, Automorphisms and encoding of AG and order domain codes, this volume, 2009, pp. 107–120. Google Scholar
  20. R. Matsumoto, Miura’s generalization of one-point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization, IEICE Trans. Fund. E82-A (1999), no. 10, 2007–2010. Google Scholar
  21. M. E. O’Sullivan, New codes for the Berlekamp–Massey–Sakata algorithm, Finite Fields Appl. 7 (2001), no. 2, 293–317. MathSciNetzbMATHCrossRefGoogle Scholar
  22. S. Sakata, The BMS algorithm, this volume, 2009a, pp. 143–163. Google Scholar
  23. S. Sakata, The BMS algorithm and decoding of AG codes, this volume, 2009b, pp. 165–185. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark

Personalised recommendations