Advertisement

Mattson Solomon Transform and Algebra Codes

  • Edgar Martínez-Moro
  • Diego Ruano
Chapter

Abstract

In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99–112, 2007). Generator theory and those aspects related to the theory of Gröbner bases are emphasized.

Keywords

Cyclic Code Regular Representation Generator Polynomial Algebra Isomorphism Semisimple Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Augot, E. Betti, and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68. Google Scholar
  2. D. Chillag, Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants, and generalized cyclic codes, Linear Algebra Appl. 218 (1995), 147–183. MathSciNetzbMATHCrossRefGoogle Scholar
  3. P. Loustaunau and E. V. York, On the decoding of cyclic codes using Gröbner bases, AAECC 8 (1997), no. 6, 469–483. MathSciNetzbMATHCrossRefGoogle Scholar
  4. E. Martínez-Moro, Regular representations of finite-dimensional separable semisimple algebras and Gröbner bases, J. Symbolic Comput. 37 (2004), no. 5, 575–587. MathSciNetzbMATHCrossRefGoogle Scholar
  5. E. Martínez-Moro, On semisimple algebra codes: generator theory, Algebra Discrete Math. 3 (2007), 99–112. Google Scholar
  6. T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy, this volume, 2009, pp. 69–91. Google Scholar
  7. M. Sala, Gröbner bases and distance of cyclic codes, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 2, 137–162. MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de ValladolidValladolidSpain
  2. 2.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations