Framework for Illumination Invariant Vehicular Traffic Density Estimation

  • Pranam Janney
  • Glenn Geers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

CCTV cameras are becoming a common fixture at the roadside. Their use varies from traffic monitoring to security surveillance. In this paper a novel technique, using Invariant Features of Local Textures (IFLT) & Support Vector Machine (SVM), for estimating vehicular traffic density on a road segment is presented. The proposed approach is computationally efficient and robust to varying illumination. Experimental results have shown that the proposed framework can achieve high performance than extant state-of-the-art techniques in varying illumination conditions.

Keywords

Intelligent Transport Systems (ITS) Invariant Features of Local Textures (IFLT) Support Vector Machines (SVM) density estimation traffic information parameters illumination invariance 

References

  1. 1.
    Beymer, D., McLauchlan, P., Coifman, B., Malik, J.: A real-time computer vision system for measuring traffic parameters. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 495–501 (1997)Google Scholar
  2. 2.
    Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results. In: Advances in Knowledge Discovery and Data Mining, pp. 153–180 (1996)Google Scholar
  3. 3.
    Janney, P., Yu, Z.: Invariant features of local textures - a rotation invariant local texture descriptor. In: IEEE conference on Computer Vision and Pattern Recognition (CVPR) (BP-Workshop) (June 2007)Google Scholar
  4. 4.
    Kamijo, S., Matsushita, Y., Ikeuchi, K., Sakauchi, M.: Traffic monitoring and accident detection at intersections. In: IEEE Trans. on ITS, vol. 1 (June 2000)Google Scholar
  5. 5.
    Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russell, S.: Towards robust automatic traffic scene analysis in real-time. In: Proceedings of the International Conference on Pattern Recognition, Israel (1994)Google Scholar
  6. 6.
    Li, X., Porikli, F.M.: A hidden markov model framework for traffic event detection using video features. In: Proceedings of International Conference on Image Processing (ICIP) (2004)Google Scholar
  7. 7.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. (Wavelet Analysis & Its Applications). Academic Press, London (1999)MATHGoogle Scholar
  8. 8.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Ojala, T., Pietikinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Porikli, F., Li, X.: Traffic congestion estimation using hmm models without vehicle tracking. In: IEEE Intelligent Vehicles Symposium, pp. 188–193 (June 2004)Google Scholar
  11. 11.
    Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  12. 12.
    Tan, E., Chen, J.: Vehicular traffic density estimation via statistical methods with automated state learning. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS) (September 2007)Google Scholar
  13. 13.
    Tseng, B., Lin, C.-Y., Smith, J.: Real-time video surveillance for traffic monitoring using virtual line analysis. In: Proceedings of IEEE International Conference on Multimedia and Expo. (ICME), vol. 2, pp. 541–544 (August 2002)Google Scholar
  14. 14.
    Won, C.S., Park, D.K., Park, S.-J.: Efficient use of mpeg-7 edge histogram descriptor. ETRI Journal 24(1) (February 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pranam Janney
    • 1
  • Glenn Geers
    • 1
  1. 1.Dept of Computer Science and EngineeringUniversity of New South Wales, Australia and, National ICT Australia (NICTA)SydneyAustralia

Personalised recommendations