The Five Points Pose Problem: A New and Accurate Solution Adapted to Any Geometric Configuration

  • Mahzad Kalantari
  • Franck Jung
  • Jean-Pierre Guedon
  • Nicolas Paparoditis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

The goal of this paper is to estimate directly the rotation and translation between two stereoscopic images with the help of five homologous points. The methodology presented does not mix the rotation and translation parameters, which is comparably an important advantage over the methods using the well-known essential matrix. This results in correct behavior and accuracy for situations otherwise known as quite unfavorable, such as planar scenes, or panoramic sets of images (with a null base length), while providing quite comparable results for more “standard” cases. The resolution of the algebraic polynomials resulting from the modeling of the coplanarity constraint is made with the help of powerful algebraic solver tools (the Gröbner bases and the Rational Univariate Representation).

Keywords

Five points pose problem polynomial direct resolution Gröbner bases relative orientation 

References

  1. 1.
    Kruppa, E.: Zur ermittlung eines objektes aus zwei perspektiven mit innerer orientierung. Other, 1939–1948 (1913)Google Scholar
  2. 2.
    Demazure, M.: Sur deux problemes de reconstruction. Technical Report 882, INRIA (1988)Google Scholar
  3. 3.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  4. 4.
    Faugeras, O.D., Maybank, S.: Motion from point matches: multiplicity of solutions. International Journal of Computer Vision 4, 225–246 (1990)CrossRefMATHGoogle Scholar
  5. 5.
    Heyden, A., Sparr, G.: Reconstruction from calibrated cameras-a new proof of the kruppa-demazure theorem. Journal of Mathematical Imaging and Vision 10, 123–142 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Triggs, B.: Routines for relative pose of two calibrated cameras from 5 points. Technical report, INRIA (2000)Google Scholar
  7. 7.
    Philip, J.: A non-iterative algorithm for determining all essential matrices corresponding to five point pairs. Photogrammetric Record 15, 589–599 (1996)Google Scholar
  8. 8.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 756–777 (2004)CrossRefGoogle Scholar
  9. 9.
    Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing 60, 284–294 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, H., Hartley, R.: Five-point motion estimation made easy, I: 630–I: 633 (2006)Google Scholar
  11. 11.
    Sarkis, M., Diepold, K., Hüper, K.: A fast and robust solution to the five-point relative pose problem using gauss-newton optimization on a manifold. In: IEEE International Conference on Accoustics, Speech and Signal Processing (ICASSP) (2007)Google Scholar
  12. 12.
    Batra, D., Nabbe, B., Hebert, M.: An alternative formulation for five point relative pose problem, p. 21 (2007)Google Scholar
  13. 13.
    Segvic, M., Schweighofer, G., Pinz, A.: Performance evaluation of the five-point relative pose with emphasis on planar scenes. In: Performance Evaluation for Computer Vision, Austria, Workshop of the Austrian Association for Pattern Recognition, pp. 33–40 (2007)Google Scholar
  14. 14.
    Thompson, E.H.: A rational algebraic formulation of the problem of relative orientation, photogrammetric record. Photogrammetric Record 3, 152–159 (1959)CrossRefGoogle Scholar
  15. 15.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate texts in mathematics. Springer-, Heidelberg (2004)MATHGoogle Scholar
  16. 16.
    Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra, 3rd edn. Undergraduate texts in mathematics. Springer, New York (2007)MATHGoogle Scholar
  17. 17.
    Elkadi, M., Mourrain, B.: Introduction à la résolution des systèmes polynomiaux. Mathématiques et Applications, vol. 57. Springer, Heidelberg (2007)CrossRefMATHGoogle Scholar
  18. 18.
    Buchberger, B.: Groebner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N. (ed.) Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems, pp. 184–232. Reidel Publishing Company, Dordrecht (1985)CrossRefGoogle Scholar
  19. 19.
    Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de
  20. 20.
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
  21. 21.
    CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it
  22. 22.
    SALSA: Solvers for algebraic systems and applications, http://www.inria.fr/recherche/equipes/salsa.en.html
  23. 23.
    Faugère, J.C.: A new efficient algorithm for computing gröbner bases (f 4). Journal of Pure and Applied Algebra 139, 61–88 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kronecker, L.: Werke. Teubner, Leipzig (1895-1931)Google Scholar
  25. 25.
    Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by using multidimensional newton formulae. Journal of Symbolic Computation 23, 137–152 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ouchi, K., Keyser, J., Rojas, J.M.: The exact rational univariate representation and its application. Technical Report 2003-11-1, Department of Computer Science, 3112 Texas A&M University, College Station, TX,77843-3112 (2003)Google Scholar
  27. 27.
    Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing 9, 433–461 (1999)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  30. 30.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An invitation to 3D vision, from images to models. Springer, Heidelberg (2003)MATHGoogle Scholar
  31. 31.
    Stewenius, H.: Matlab code for the for solving the fivepoint problem, http://vis.uky.edu/~stewe/FIVEPOINT/
  32. 32.
    Philip, J.: Critical point configurations of the 5-, 6-, 7-, and 8-point algorithms for relative orientations. Technical report, TRITA-MAT, KTH,Sweden (1998)Google Scholar
  33. 33.
    Camillo, H.: Test data sets for automatic image orientation (2007), http://www.ipf.tuwien.ac.at/car/isprs/test-data/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mahzad Kalantari
    • 1
    • 2
    • 3
  • Franck Jung
    • 4
  • Jean-Pierre Guedon
    • 2
    • 3
  • Nicolas Paparoditis
    • 1
  1. 1.MATIS LaboratoryInstitut Geographique NationalSaint-Mandé CedexFrance
  2. 2.Institut Recherche Communications Cybernétique de Nantes (IRCCyN) UMR CNRS 6597Nantes Cedex 03France
  3. 3.Institut de Recherche sur les Sciences et Techniques de la Ville CNRS FR 2488France
  4. 4.DDE - Seine MaritimeFrance

Personalised recommendations