Semantic Driven Fuzzy Clustering for Human-Centric Information Processing Applications

  • Paulo Fazendeiro
  • José Valente de Oliveira
Part of the Studies in Computational Intelligence book series (SCI, volume 182)


This chapter presents an overview of fuzzy clustering techniques aiming at human-centric information processing applications and introduces the accuracy-interpretability tradeoff into the conceptualization of the clustering process. Nowadays it is a matter of common agreement that the cornerstone notion of information granulation is fundamental for a successful outcome of exploratory data analysis and modeling in fields like science, engineering, economics, medicine and many others. There is no doubt that fuzzy clustering is an excellent medium to obtain such information granules. For a matter of self-containment the chapter starts by presenting the fundamentals of fuzzy clustering along with some variants and extensions. In the second part of the chapter, the fuzzy clustering approach is highlighted as a valuable human-centric interface: the roadmap from data to information granules is displayed along with a discussion on some mechanisms to implement user relevance feedback. In the last part of the chapter a semantic driven evolutionary fuzzy clustering algorithm is analyzed, as a particular instance of a class of unsupervised clustering algorithms which embraces constraints usually applied in supervised learning. The results show that these more general constraints while tuning the equilibrium between accuracy and interpretability concomitantly help to unveil the structural information of the data.


Membership Function Cluster Algorithm Fuzzy System Fuzzy Cluster Semantic Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E.: The Irises of the Gaspe peninsula. Bull. Amer. Iris Soc. 59, 2–5 (1935)Google Scholar
  2. 2.
    Bargiela, A., Pedrycz, W.: Recursive Information Granulation: Aggregation and Interpretation Issues. IEEE Trans. on Systems, Man, and Cybernetics 33(1), 96–112 (2003)CrossRefGoogle Scholar
  3. 3.
    Bargiela, A., Pedrycz, W.: A Model of Granular Data: a Design Problem with the Tchebyshev FCM. Soft Comput. 9, 155–163 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bargiela, A., Pedrycz, W.: The roots of granular computing. In: Proc. Int. Conference on Granular Computing, pp. 806–809 (2006)Google Scholar
  5. 5.
    Bensaid, A., et al.: Partially supervised clustering for image segmentation. Pattern Recognition 29, 859–871 (1996)CrossRefGoogle Scholar
  6. 6.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  7. 7.
    Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, I linear structure: Fuzzy c-lines. J. Appl. Math. 40(2), 339–357 (1981)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, II Fuzzy c-varieties and convex combinations thereof. J. Appl. Math. 40(2), 358–372 (1981)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bezdek, J., Hathaway, R., Sabin, M., Tucker, W.: Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans. Syst., Man and Cybern. 17, 873–877 (1987)zbMATHGoogle Scholar
  10. 10.
    Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Accuracy Improvements in Linguistic Fuzzy Modeling. Physica-Verlag (2003)Google Scholar
  11. 11.
    Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Physica-Verlag (2003)Google Scholar
  12. 12.
    Castellano, G., Fanelli, A., Mencar, C.: Generation of interpretable fuzzy granules by a double-clustering technique. Archives of Control Sciences - Special Issue on Granular Computing 12(4), 397–410 (2002)MathSciNetGoogle Scholar
  13. 13.
    Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation Series, vol. 5. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Dave, R.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12, 657–664 (1991)CrossRefGoogle Scholar
  15. 15.
    Dave, R., Sen, S.: On generalising the noise clustering algorithms. In: Proc. of the 7th IFSA World Congress, IFSA 1997, pp. 205–210 (1997)Google Scholar
  16. 16.
    Dave, R.: Fuzzy shell clustering and application to circle detection in digital images. Int. J. General Syst. 16, 343–355 (1990)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Davis, L.: Handbook of genetic algorithms. Van Nostrand Reinold (1991)Google Scholar
  18. 18.
    Egan, M.: Locating clusters in noisy data: a genetic fuzzy c-means clustering algorithm. In: Proceedings of the Conference of the North American Fuzzy Information Processing Society, pp. 178–182. IEEE, Los Alamitos (1998)Google Scholar
  19. 19.
    Egan, M., Krishnamoorthy, M., Rajan, K.: Comparative Study of a Genetic Fuzzy c-means Algorithm and a Validity Guided Fuzzy c-means Algorithm for Locating Clusters in Noisy Data. In: Proc. International Conference on Evolutionary Computation, pp. 440–445 (1998)Google Scholar
  20. 20.
    Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)Google Scholar
  21. 21.
    Fazendeiro, P., Valente de Oliveira, J.: A Survey of Fuzzy Control Strategies for Neuromuscular Blockade Using Continuous Infusion of Atracurium. In: Proc. FUZZ-IEEE 2002, Honolulu, USA, pp. 547–552 (2002)Google Scholar
  22. 22.
    Fazendeiro, P., Valente de Oliveira, J.: A Working Hypothesis on the Semantics/Accuracy Synergy. In: Proc. Joint EUSFLAT-LFA, Barcelona, Spain, pp. 266–271 (2005)Google Scholar
  23. 23.
    Fazendeiro, P., Valente de Oliveira, J.: A semantic driven evolutive fuzzy clustering algorithm. In: Proc. of FUZZ-IEEE, London, UK, July 2007, pp. 1977–1982 (2007)Google Scholar
  24. 24.
    Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: Multi-objective evolutionary optimization of accuracy and interpretability for neuromuscular blockade control. In: Proc. of IFSA 2005 - The International Fuzzy Systems Association World Congress, Beijing, China, pp. 908–913 (2005)Google Scholar
  25. 25.
    Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: A Multi-Objective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller. IEEE Trans. on BioMedical Engineering 54(9), 1667–1678 (2007)CrossRefGoogle Scholar
  26. 26.
    Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768–780 (1965)Google Scholar
  27. 27.
    Fralley, C., Raftery, A.: How many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)CrossRefGoogle Scholar
  28. 28.
    Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recognition 30(7), 1109–1119 (1997)CrossRefGoogle Scholar
  29. 29.
    Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 450–465 (1999)CrossRefGoogle Scholar
  30. 30.
    Gath, I., Geva, A.: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 773–781 (1989)CrossRefGoogle Scholar
  31. 31.
    Geva, A.: Hierarchical Unsupervised Fuzzy Clustering. IEEE Trans. Fuzzy Systems 7(6), 723–733 (1999)CrossRefGoogle Scholar
  32. 32.
    Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE Conf. Decision Contr., San Diego, CA, pp. 761–766 (1979)Google Scholar
  33. 33.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17(2/3), 107–145 (2001)zbMATHCrossRefGoogle Scholar
  34. 34.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering algorithms and validity measures. In: Proc. 13th International Conference on Scientific and Statistical Database Management, pp. 3–22 (2001)Google Scholar
  35. 35.
    Hall, L., Ozyurt, B., Bezdek, J.: Clustering with a genetically optimized approach. IEEE Trans. on Evolutionary Computation 3(2), 103–112 (1999)CrossRefGoogle Scholar
  36. 36.
    Hathaway, R., Bezdek, J.: Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Syst. 1, 195–204 (1993)CrossRefGoogle Scholar
  37. 37.
    Hathaway, R., Bezdek, J.: Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. Pattern Recognition Letters 23, 151–160 (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Hathaway, R., Bezdek, J., Hu, Y.: Generalized Fuzzy c-Means Clustering Strategies Using L p Norm Distances. IEEE Transactions on Fuzzy Systems 5, 576–582 (2000)CrossRefGoogle Scholar
  39. 39.
    Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proceedings of the IEEE 87(9), 1575–1600 (1999)CrossRefGoogle Scholar
  40. 40.
    F. Hoppner, “Fuzzy shell clustering algorithms in image processing– Fuzzy c-rectangular and two rectangular shells,” IEEE Trans. Fuzzy Syst., 5, 599–613 (1997)Google Scholar
  41. 41.
    Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley, Chichester (1999)Google Scholar
  42. 42.
    Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  43. 43.
    Klawonn, F., Keller, A.: Fuzzy clustering with evolutionary algorithms. International Journal of Intelligent Systems 13(10/11), 975–991 (1998)CrossRefGoogle Scholar
  44. 44.
    Klawonn, F., Höppner, F.: What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254–264. Springer, Heidelberg (2003)Google Scholar
  45. 45.
    Krisnapuram, R., Frigui, H., Nasroui, O.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Trans. Fuzzy Syst. 3(1), 29–60 (1995)CrossRefGoogle Scholar
  46. 46.
    Krishnapuram, R., Joshi, A., Yi, L.: A Fuzzy Relative of the k-Medoids Algorithm with Application to Web Document and Snippet Clustering. In: Proc. IEEE International Fuzzy Systems Conference, pp. 1281–1286 (1999)Google Scholar
  47. 47.
    Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy Systems 1, 98–110 (1993)CrossRefGoogle Scholar
  48. 48.
    Krishnapuram, R., Keller, J.: The possibilistic C-Means algorithm: insights and recommendations. IEEE Trans. on Fuzzy Systems 4, 385–393 (1996)CrossRefGoogle Scholar
  49. 49.
    Liu, G.: Introduction to Combinatorial Mathematics. Mc-Graw-Hill, New York (1968)zbMATHGoogle Scholar
  50. 50.
    Liu, H., Huang, S.-T.: Evolutionary semi-supervised fuzzy clustering. Pattern Recognition Letters 24, 3105–3113 (2003)CrossRefGoogle Scholar
  51. 51.
    Liu, J., Xie, W.: A genetics-based approach to fuzzy clustering. In: Proc. of the IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2233–2240 (1995)Google Scholar
  52. 52.
    Loia, V., Pedrycz, W., Senatore, S.: P-FCM: a proximity-based fuzzy clustering for user-centered web applications. International Journal of Approximate Reasoning 34, 121–144 (2003)zbMATHCrossRefGoogle Scholar
  53. 53.
    Lorette, A., Descombes, X., Zerubia, J.: Fully unsupervised fuzzy clustering with entropy criterion. Proceedings 15th International Conference on Pattern Recognition 3, 986–989 (2000)Google Scholar
  54. 54.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. 1, 281–297 (1967)MathSciNetGoogle Scholar
  55. 55.
    Maulik, U., Bandyopadhyay, S.: Performance evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  56. 56.
    Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. on Geoscience and Remote Sensing 41(5), 1075–1081 (2003)CrossRefGoogle Scholar
  57. 57.
    Miller, G.: The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  58. 58.
    Milligan, G., Cooper, C.: An examination of procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50(2), 159–179 (1985)CrossRefGoogle Scholar
  59. 59.
    Ohashi, Y.: Fuzzy Clustering and robust estimation. In: Proc. of 9th Meeting SAS User Group Int., Florida (1984)Google Scholar
  60. 60.
    Pal, N., Bezdek, J.: On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)CrossRefGoogle Scholar
  61. 61.
    Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural network. IEEE Trans. Neural Networks 9, 601–612 (1998)CrossRefGoogle Scholar
  62. 62.
    Pedrycz, W., Valente de Oliveira, J.: An Algorithmic Framework for Development and Optimization of Fuzzy Models. Special issue of Fuzzy Sets and Systems on Fuzzy Modelling 80(1), 37–55 (1996)Google Scholar
  63. 63.
    Pedrycz, W., Vukovich, G.: Abstraction and Specialization of Information Granules. IEEE Trans. on Systems, Man and Cybernetics, Part B 31(1), 106–111 (2001)CrossRefGoogle Scholar
  64. 64.
    Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans. on Systems, Man and Cybernetics, Part B 27(5), 787–795 (1997)CrossRefGoogle Scholar
  65. 65.
    Runkler, T., Bezdek, J.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst. 7, 377–393 (1999)CrossRefGoogle Scholar
  66. 66.
    Runkler, T.: Ant colony optimization of clustering models. International Journal of Intelligent Systems 20(12), 1233–1261 (2005)zbMATHCrossRefGoogle Scholar
  67. 67.
    Runkler, T., Katz, C.: Fuzzy Clustering by Particle Swarm Optimization. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 601–608 (2006)Google Scholar
  68. 68.
    Ruspini, E.: A New Approach to Clustering. Information Control 15, 22–32 (1969)zbMATHCrossRefGoogle Scholar
  69. 69.
    Sarkar, M.: Evolutionary programming-based fuzzy clustering. In: Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 247–254. MIT Press, Cambridge (1996)Google Scholar
  70. 70.
    Valente de Oliveira, J.: A design methodology for fuzzy system interfaces. IEEE Trans. on Fuzzy Systems 3(4), 404–414 (1995)CrossRefGoogle Scholar
  71. 71.
    Valente de Oliveira, J.: Semantic Constraints for Membership Function Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Man 29(1), 128–138 (1999)CrossRefGoogle Scholar
  72. 72.
    Valente de Oliveira, J., Pedrycz, W. (eds.): Advances in Fuzzy Clustering and Its Applications. Wiley, Chichester (2007)Google Scholar
  73. 73.
    Wei, C.-H., Fahn, C.-S.: A distributed approach to fuzzy clustering by genetic algorithms. In: Proceedings of the Asian Fuzzy Systems Symposium, pp. 350–357 (1996)Google Scholar
  74. 74.
    Xie, X., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)CrossRefGoogle Scholar
  75. 75.
    Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Trans. on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  76. 76.
    Yuan, B., Klir, G., Swan-Stone, J.: Evolutionary fuzzy c-means clustering algorithm. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2221–2226 (1995)Google Scholar
  77. 77.
    Zadeh, L.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man, and Cybernetics SMC-3(1), 28–44 (1973)MathSciNetGoogle Scholar
  79. 79.
    Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (part I) (1975); 301–357 (part II)CrossRefMathSciNetGoogle Scholar
  80. 80.
    Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 9, 43–80 (1976) (part III)CrossRefMathSciNetGoogle Scholar
  81. 81.
    Zadeh, L.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4(2), 103–111 (1996)CrossRefMathSciNetGoogle Scholar
  82. 82.
    Zadeh, L.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Zadeh, L.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2(1), 23–25 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paulo Fazendeiro
    • 1
    • 2
  • José Valente de Oliveira
    • 2
  1. 1.Department of InformaticsUniversity of Beira InteriorCovilhaPortugal
  2. 2.UAlg Informatics LabUniversity of AlgarveFaroPortugal

Personalised recommendations