3D Face Recognition Using R-ICP and Geodesic Coupled Approach

  • Karima Ouji
  • Boulbaba Ben Amor
  • Mohsen Ardabilian
  • Liming Chen
  • Faouzi Ghorbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)


While most of existing methods use facial intensity images, a newest ones focus on introducing depth information to surmount some of classical face recognition problems such as pose, illumination, and facial expression variations. This abstract summarizes a new face recognition approach invariant to facial expressions based on dimensional surface matching. The core of our recognition/authentication scheme consists of aligning then comparing a probe face surface and gallery facial surfaces. In the off-line phase, we build the 3D face database with neutral expressions. The models inside include both shape and texture channels. In the on-line phase, a partial probe model is captured and compared either to all 3D faces in the gallery for identification scenario or compared to the genuine model for authentication scenario. The first step aligns probe and gallery models based only on static regions of faces within a new variant of the well known Iterative Closest Point called on R-ICP (Region-based Iterative Closest Point) which approximates the rigid transformations between the presented probe face and gallery one. R-ICP result is two matched sets of vertices in the both static and mimic regions of the face surfaces. For the second step, two geodesic maps are computed for the pair of vertices in the matched face regions. The recognition and authentication similarity score is based on the distance between these maps. Our evaluation experiments are done on 3D face dataset of IV2 french project.


3D Face Recognition ICP R-ICP Geodesics Computation Segmentation Mimics Biometric Evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: Technical report NIST. FRVT 2002: Evaluation Report (Mars 2003)Google Scholar
  2. 2.
    Pan, G., Wu, Z., Pan, Y.: Automatic 3D Face Verification From Range Data. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 193–196 (2003)Google Scholar
  3. 3.
    Malassiotis, S., Strintzis, M.G.: Pose and Illumination Compensation for 3D Face Recognition. In: Proc. IEEE International Conference on Image Processing, pp. 91–94 (2004)Google Scholar
  4. 4.
    Ben Amor, B., Ardabilian, M., Chen, L.: New Experiments on ICP-based 3D face recognition and authentication. In: Proceeding of International Conference on Pattern Recognition (ICPR 2006), pp. 1195–1199 (2006)Google Scholar
  5. 5.
    Ben Amor, B., Ouji, K., Ardabilian, M., Chen, L.: 3D Face recognition by ICP-based shape matching. In: Proceeding of IEEE International Conference on Machine Intelligence (ICMI 2005) (2005)Google Scholar
  6. 6.
    Beumier, C., Acheroy, M.: Automatic 3D Face Authentication. Image and Vision Computing 18, 315–321 (2000)CrossRefMATHGoogle Scholar
  7. 7.
    Xiaoguang, L., Jain, A.K.: Integrating Range and Texture Information for 3D Face Recognition. In: Proc. 7th IEEE Workshop on Applications of Computer Vision, pp. 156–163 (2005) Google Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. International Journal of Computer Vision (IJCV), 5–30 (August 2005)Google Scholar
  9. 9.
    Samir, C., Srivastava, A., Daoudi, M.: Three-Dimensional Face Recognition Using Shapes of Facial Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1858–1863 (2006)CrossRefGoogle Scholar
  10. 10.
    Ouji, K., Ben Amor, B., Ardabilian, M., Ghorbel, F., Chen, L.: 3D Face Recognition using ICP and Geodesic Computation Coupled Approach. In: IEEE/ACM SITIS, Hammamet, Tunisie (Décembre 2006)Google Scholar
  11. 11.
    Ben Amor, B., Ouji, K., Ardabilian, M., Ghorbel, F., Chen, L.: 3D Face Recognition using ICP and Geodesic Computation Coupled Approach. In: Signal Processing for image enhancement and multimedia processing. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: An Evaluation of Multi-modal 2D+3D Face Biometrics. IEEE Transactions on PAMI 27, 619–624 (2005)CrossRefGoogle Scholar
  13. 13.
    Xu, C., Wang, Y., Tan, T., Quan, L.: Depth vs. Intensity: Which is More Important for Face Recognition? In: Proc. 17th International Conference on Pattern Recognition (2004)Google Scholar
  14. 14.
    Chang, K.J., Bowyer, K.W., Flynn, P.J.: Effects on facial expression in 3D face recognition. In: Proceedings of the SPIE, vol. 5779, pp. 132–143 (2005)Google Scholar
  15. 15.
    Ben Amor, B., Ardabilian, M., Chen, L.: Enhancing 3D Face Recognition By Mimics Segmentation. In: Intelligent Systems Design and Applications (ISDA 2006), pp. 150–155 (2006)Google Scholar
  16. 16.
    Ben Amor, B., Ouji, K., Ardabilian, M., Chen, L.: Une nouvelle approche d’appariement 3D oriente regions pour la reconnaissance faciale. In: Taima 2007, Hammamet, Tunisie (2007)Google Scholar
  17. 17.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. Proc. IEEE Trans. Pattern Anal. Mach. Intell 14, 239–256 (1992)CrossRefGoogle Scholar
  18. 18.
    Sethian, J.A., Kimmel, R., et al.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proc. Nat. Acad. Sci 93, 4 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karima Ouji
    • 1
  • Boulbaba Ben Amor
    • 2
  • Mohsen Ardabilian
    • 1
  • Liming Chen
    • 1
  • Faouzi Ghorbel
    • 3
  1. 1.LIRIS, Lyon Research Center for Images and Intelligent Information SystemsEcullyFrance
  2. 2.LIFL, Computer Science Laboratory of Lille, Telecom Lille1, Cité scientifique Rue Guglielmo Marconi 59653 Villeneuve d’Ascq Cedex BP 20145France
  3. 3.GRIFT, Groupe de Recherche en Images et Formes de TunisieEcole Nationale, des Sciences de l’InformatiqueTunisie

Personalised recommendations