Sparse Multiscale Patches (SMP) for Image Categorization

  • Paolo Piro
  • Sandrine Anthoine
  • Eric Debreuve
  • Michel Barlaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)

Abstract

In this paper we address the task of image categorization using a new similarity measure on the space of Sparse Multiscale Patches (SMP). SMP s are based on a multiscale transform of the image and provide a global representation of its content. At each scale, the probability density function (pdf) of the SMP s is used as a description of the relevant information. The closeness between two images is defined as a combination of Kullback-Leibler divergences between the pdfs of their SMP s.

In the context of image categorization, we represent semantic categories by prototype images, which are defined as the centroids of the training clusters. Therefore any unlabeled image is classified by giving it the same label as the nearest prototype. Results obtained on ten categories from the Corel collection show the categorization accuracy of the SMP method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: CAIVD 1998: Proceedings of the 1998 International Workshop on Content-Based Access of Image and Video Databases (CAIVD 1998), Washington, DC, USA, p. 42. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  2. 2.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10, 117–130 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1075–1088 (2003)CrossRefGoogle Scholar
  4. 4.
    Bi, J., Chen, Y., Wang, J.Z.: A sparse support vector machine approach to region-based image categorization. In: CVPR 2005, pp. 1121–1128 (2005)Google Scholar
  5. 5.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, vol. (2), pp. 2169–2178 (2006)Google Scholar
  6. 6.
    Liu, Y., Perronnin, F.: A similarity measure between unordered vector sets with application to image categorization. In: CVPR (2008)Google Scholar
  7. 7.
    Zhang, H., Berg, A.C., Maire, M., Malik, J.: Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In: CVPR, vol. (2), pp. 2126–2136 (2006)Google Scholar
  8. 8.
    Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Braem, P.B.: Basic objects in natural categories. Cognitive Psychology 8, 382–439 (1976)CrossRefGoogle Scholar
  9. 9.
    Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.M.: Empirical evaluation of dissimilarity measures for color and texture. In: ICCV, pp. 1165–1172 (1999)Google Scholar
  10. 10.
    Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using a scale mixture of Gaussians in the wavelet domain. TIP 12, 1338–1351 (2003)MathSciNetMATHGoogle Scholar
  11. 11.
    Romberg, J.K., Choi, H., Baraniuk, R.G.: Bayesian tree-structured image modeling using wavelet-domain hidden markov models. TIP 10, 1056–1068 (2001)Google Scholar
  12. 12.
    Pierpaoli, E., Anthoine, S., Huffenberger, K., Daubechies, I.: Reconstructing sunyaev-zeldovich clusters in future cmb experiments. Mon. Not. Roy. Astron. Soc. 359, 261–271 (2005)CrossRefGoogle Scholar
  13. 13.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 532–540 (1983)CrossRefGoogle Scholar
  14. 14.
    Piro, P., Anthoine, S., Debreuve, E., Barlaud, M.: Image retrieval via kullback-leibler divergence of patches of multiscale coefficients in the knn framework. In: CBMI, London, UK (2008)Google Scholar
  15. 15.
    Boltz, S., Debreuve, E., Barlaud, M.: High-dimensional kullback-leibler distance for region-of-interest tracking: Application to combining a soft geometric constraint with radiometry. In: CVPR, Minneapolis, USA (2007)Google Scholar
  16. 16.
    Angelino, C.V., Debreuve, E., Barlaud, M.: Image restoration using a knn-variant of the mean-shift. In: ICIP, San Diego, USA (2008)Google Scholar
  17. 17.
    Do, M., Vetterli, M.: Wavelet based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. TIP 11, 146–158 (2002)MathSciNetGoogle Scholar
  18. 18.
    Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-aware images. TIP 15, 1680–1689 (2006)Google Scholar
  19. 19.
    Ahmad, I., Lin, P.E.: A nonparametricestimationof the entropy absolutely continuousdistributions. IEEE Trans. Inform. Theory 22, 372–375 (1976)CrossRefGoogle Scholar
  20. 20.
    Terrell, G.R., Scott, D.W.: Variable kernel density estimation. The Annals of Statistics 20, 1236–1265 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Loftsgaarden, D., Quesenberry, C.: A nonparametric estimate of a multivariate density function. AMS 36, 1049–1051 (1965)MathSciNetMATHGoogle Scholar
  22. 22.
    Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. 5, 913–939 (2004)MathSciNetGoogle Scholar
  23. 23.
    Li, T., Kweon, I.S.: A semantic region descriptor for local feature based image categorization. In: ICASSP 2008, pp. 1333–1336 (2008)Google Scholar
  24. 24.
    Zhu, Y., Liu, X., Mio, W.: Content-based image categorization and retrieval using neural networks. In: ICME 2007, pp. 528–531 (2007)Google Scholar
  25. 25.
    Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu. In: CVPR Workshop on Computer Vision on GPU (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paolo Piro
    • 1
  • Sandrine Anthoine
    • 1
  • Eric Debreuve
    • 1
  • Michel Barlaud
    • 1
  1. 1.University of Nice-Sophia Antipolis / CNRSFrance

Personalised recommendations