Validation of an Algorithm for Segmentation of Full-Body Movement Sequences by Perception: A Pilot Experiment

  • Donald Glowinski
  • Antonio Camurri
  • Carlo Chiorri
  • Barbara Mazzarino
  • Gualtiero Volpe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5085)

Abstract

This paper presents a pilot experiment for the perceptual validation by human subjects of a motion segmentation algorithm, i.e., an algorithm for automatically segmenting a motion sequence (e.g., a dance fragment) into a collection of pause and motion phases. Perceptual validation of motion and gesture analysis algorithms is an important issue in the development of multimodal interactive systems where human full-body movement and expressive gesture are a major input channel. The discussed experiment is part of a broader research at DIST-InfoMus Lab aiming at investigating the non-verbal mechanisms of communication involving human movement and gesture as primary conveyors of expressive emotional content.

Keywords

expressive gesture motion segmentation motion feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallbott, H.G.: Bodily expression of emotion. European Journal of Social Psychology 28, 879–896 (1998)CrossRefGoogle Scholar
  2. 2.
    Camurri, A., De Poli, G., Leman, M., Volpe, G.: Toward Communicating Expressiveness and Affect in Multimodal Interactive Systems for Performing Art and Cultural Applications. IEEE Multimedia Magazine 12(1), 43–53 (2005)CrossRefGoogle Scholar
  3. 3.
    Bouchard, D., Badler, N.: Semantic segmentation of motion capture using Laban Movement Analysis. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS, vol. 4722, pp. 37–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Kahol, K., Tripathi, P., Panchanathan, S.: Automated gesture segmentation from dance sequences. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 883–888 (2004)Google Scholar
  5. 5.
    Fod, A., Mataric, M.J., Jenkins, O.C.: Automated Derivation of Primitives for Movement Classification. Auton. Robots 12(1), 39–54 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Bartenieff, I., Davis, M.: Effort-Shape analysis of movement: The unity of expression and function. In: Davis, M. (ed.) Research Approaches to Movement and Personality. Arno Press Inc., New York (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Donald Glowinski
    • 1
  • Antonio Camurri
    • 1
  • Carlo Chiorri
    • 2
  • Barbara Mazzarino
    • 1
  • Gualtiero Volpe
    • 1
  1. 1.InfoMus Lab-Casa PaganiniUniversity of GenoaGenoaItaly
  2. 2.Disa-Department of Anthropological Sciences/psychology unitUniversity of GenoaGenoa

Personalised recommendations