Efficient Scheduling of Data-Harvesting Trees

  • Bastian Katz
  • Steffen Mecke
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5389)

Abstract

Many applications in sensor networks demand for energy and time optimal routing of data towards a sink. In this work we present mechanisms to set up energy and time efficient TDMA schedules for a given routing tree under very strict limitations: Nodes have only a constant size memory and must agree on a schedule using only a minimum of communication for set up: Each node is only allowed to send a single message to each of its neighbors.

We propose and analyze solutions in two different interference models. We show that, despite these tight restrictions, it is possible to compute energy optimal schedules which are almost time optimal and time optimal schedules which are almost energy optimal in the total interference model and we describe a 4-approximative algorithm in the k-local interference model.

We also show how to extend these mechanisms to settings with packet loss, while still guaranteeing bounds on energy consumption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A Wireless Sensor Network for Structural Monitoring. In: 2nd Int. Conf. on Embedded networked sensor systems (SenSys 2004), pp. 13–24. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Turau, V., Weyer, C.: Scheduling Transmission of Bulk Data in Sensor Networks Using a Dynamic TDMA Protocol. In: 8th Int. Conf. on Mobile Data Management (MDM 2007), pp. 321–325. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  3. 3.
    Bermond, J.C., Galtier, J., Klasing, R., Morales, N., Perennes, S.: Hardness and Approximation of Gathering in Static Radio Networks. Parallel Processing Letters 16(2), 165–183 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An Approximation Algorithm for the Wireless Gathering Problem. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 328–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Langendoen, K., Halkes, G.: Energy-efficient medium access control. In: Zurawski, R. (ed.) Embedded Systems Handbook. CRC Press, Boca Raton (2005)Google Scholar
  6. 6.
    Lu, G., Krishnamachari, B., Raghavendra, C.S.: An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor Networks. In: 18th Int. Parallel and Distributed Processing Symp (IPDPS 2004), p. 224a. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  7. 7.
    Hohlt, B., Doherty, L., Brewer, E.A.: Flexible power scheduling for sensor networks. In: 3rd Int. Symp. on Information Processing in Sensor Networks (IPSN 2004), pp. 205–214. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  8. 8.
    Yao, Y., Alam, S.M.N., Gehrke, J., Servetto, S.D.: Network Scheduling for Data Archiving Applications in Sensor Networks. In: 3rd Worksh. on Data Management for Sensor Networks (DMSN 2006), pp. 19–25. ACM Press, New York (2006)Google Scholar
  9. 9.
    Turau, V., Weyer, C.: TDMA-Schemes for Tree-Routing in Data Intensive Wireless Sensor Networks. In: 1st Int. Work. on Protocols and Algorithms for Reliable and Data Intensive Sensor Networks (PARIS), pp. 1–6. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  10. 10.
    Burri, N., von Rickenbach, P., Wattenhofer, M.: Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In: 6th Int. Symp. on Information Processing in Sensor Networks (IPSN 2007), pp. 450–459. ACM Press, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bastian Katz
    • 1
  • Steffen Mecke
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Universität Karlsruhe (TH)Germany

Personalised recommendations