Advertisement

Vortex Methods for Massively Parallel Computer Architectures

  • Philippe Chatelain
  • Alessandro Curioni
  • Michael Bergdorf
  • Diego Rossinelli
  • Wanda Andreoni
  • Petros Koumoutsakos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5336)

Abstract

We present Vortex Methods implemented in massively parallel computer architectures for the Direct Numerical Simulations of high Reynolds numbers flows. Periodic and non-periodic domains are considered leading to unprecedented simulations using billions of particles. We discuss the implementation performance of the method up to 16k IBM BG/L nodes and the evolutionary optimization of long wavelength instabilities in aircraft wakes.

Keywords

Direct Numerical Simulation Vortex Ring Vortex Pair Secondary Vortex Vortex Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Winckelmans, G.: Vortex methods. In: Stein, E., De Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, vol. 3. John Wiley and Sons, Chichester (2004)Google Scholar
  2. 2.
    Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. Journal of Fluid Mechanics 350, 311–330 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Crouch, J.D., Miller, G.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA Journal 39(12), 2374–2381 (2001)CrossRefGoogle Scholar
  5. 5.
    Durston, D.A., Walker, S.M., Driver, D.M., Smith, S.C., Savas, Ö.: Wake vortex alleviation flow field studies. J. Aircraft 42(4), 894–907 (2005)CrossRefGoogle Scholar
  6. 6.
    Graham, W.R., Park, S.W., Nickels, T.B.: Trailing vortices from a wing with a notched lift distribution. AIAA Journal 41(9), 1835–1838 (2003)CrossRefGoogle Scholar
  7. 7.
    Ortega, J.M., Savas, Ö.: Rapidly growing instability mode in trailing multiple-vortex wakes. AIAA Journal 39(4), 750–754 (2001)CrossRefGoogle Scholar
  8. 8.
    Stumpf, E.: Study of four-vortex aircraft wakes and layout of corresponding aircraft configurations. J. Aircraft 42(3), 722–730 (2005)CrossRefGoogle Scholar
  9. 9.
    Winckelmans, G., Cocle, R., Dufresne, L., Capart, R.: Vortex methods and their application to trailing wake vortex simulations. C. R. Phys. 6(4-5), 467–486 (2005)CrossRefGoogle Scholar
  10. 10.
    Cocle, R., Dufresne, L., Winckelmans, G.: Investigation of multiscale subgrid models for les of instabilities and turbulence in wake vortex systems. Lecture Notes in Computational Science and Engineering 56 (2007)Google Scholar
  11. 11.
    Beale, J.T., Majda, A.: Vortex methods I: convergence in 3 dimensions. Mathematics of Computation 39(159), 1–27 (1982)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Beale, J.T.: On the accuracy of vortex methods at large times. In: Proc. Workshop on Comput. Fluid Dyn. and React. Gas Flows, IMA, Univ. of Minnesota, 1986, p. 19. Springer, New York (1988)CrossRefGoogle Scholar
  13. 13.
    Cottet, G.H.: Artificial viscosity models for vortex and particle methods. J. Comput. Phys. 127(2), 299–308 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Koumoutsakos, P.: Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138(2), 821–857 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chaniotis, A., Poulikakos, D., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 182, 67–90 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Eldredge, J.D., Colonius, T., Leonard, A.: A vortex particle method for two dimensional compressible flow. J. Comput. Phys. 179, 371–399 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Monaghan, J.J.: Extrapolating b splines for interpolation. J. Comput. Phys. 60(2), 253–262 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM a highly efficient parallel particle mesh library for the simulation of continuum systems. J. Comput. Phys. 215, 566–588 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Seattle, WA, vol. 3, pp. 1381–1384 (1998)Google Scholar
  20. 20.
    Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA Journal 8(12), 2172–2179 (1970)CrossRefGoogle Scholar
  21. 21.
    Stuff, R.: The near-far relationship of vortices shed from transport aircraft. In: AIAA (ed.) AIAA Applied Aerodynamics Conference, 19th, Anaheim, CA, AIAA, pp. 2001–2429. AIAA, Anaheim (2001)Google Scholar
  22. 22.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10(4-6), 199–228 (1992)CrossRefGoogle Scholar
  23. 23.
    Bergdorf, M., Koumoutsakos, P., Leonard, A.: Direct numerical simulations of vortex rings at re γ= 7500. J. Fluid. Mech. 581, 495–505 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hockney, R., Eastwood, J.: Computer Simulation using Particles. Institute of Physics Publishing (1988)Google Scholar
  25. 25.
    Chatelain, P., Koumoutsakos, P.: Fast unbounded domain vortex methods using fourier solvers (in preparation, 2008)Google Scholar
  26. 26.
    Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)CrossRefGoogle Scholar
  27. 27.
    Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Computer Methods in Applied Mechanics and Engineering 197(13), 1296–1304 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe Chatelain
    • 1
  • Alessandro Curioni
    • 2
  • Michael Bergdorf
    • 1
  • Diego Rossinelli
    • 1
  • Wanda Andreoni
    • 2
  • Petros Koumoutsakos
    • 1
  1. 1.Computational Science and Engineering LaboratoryETH ZurichSwitzerland
  2. 2.Computational Sciences, IBM Research Division - Zurich Research LaboratoryRueschlikonSwitzerland

Personalised recommendations