A Parallel Matrix Scaling Algorithm

  • Patrick R. Amestoy
  • Iain S. Duff
  • Daniel Ruiz
  • Bora Uçar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5336)

Abstract

We recently proposed an iterative procedure which asymptotically scales the rows and columns of a given matrix to one in a given norm. In this work, we briefly mention some of the properties of that algorithm and discuss its efficient parallelization. We report on a parallel performance study of our implementation on a few computing environments.

Keywords

Sparse matrices matrix scaling equilibration parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-vector multiplication. Electronic Transactions on Numerical Analysis 21, 47–65 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Bunch, J.R.: Equilibration of symmetric matrices in the max-norm. Journal of the ACM 18(4), 566–572 (1971)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Burns, G., Daoud, R., Vaigl, J.: LAM: an open cluster environment for MPI. In: Ross, J.W. (ed.) Proceedings of Supercomputing Symposium 1994, pp. 379–386. University of Toronto (1994)Google Scholar
  4. 4.
    Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)CrossRefGoogle Scholar
  5. 5.
    Çatalyürek, Ü.V., Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool, version 3.0. Technical Report BU-CE-9915, Computer Engineering Department, Bilkent University (1999)Google Scholar
  6. 6.
    Çatalyürek, Ü.V., Aykanat, C.: A fine-grain hypergraph model for 2d decomposition of sparse matrices. In: Proceedings of 15th International Parallel and Distributed Processing Symposium (IPDPS), San Francisco, CA (April 2001)Google Scholar
  7. 7.
    Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. IMA Journal of Applied Mathematics 10(1), 118–124 (1972)CrossRefMATHGoogle Scholar
  8. 8.
    Davis, T.A.: University of Florida sparse matrix collection. NA Digest, 92/96/97, 1994/1996/1997, http://www.cise.ufl.edu/research/sparse/matrices
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91(2), 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986)MATHGoogle Scholar
  11. 11.
    Duff, I.S., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and Applications 22(4), 973–996 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing 21(6), 2048–2072 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    HSL: A collection of Fortran codes for large-scale scientific computation (2004), http://www.cse.scitech.ac.uk/nag/hsl
  14. 14.
    MPI: A Message-Passing Interface Standard, Version 2.1 (2008), http://www.mpi-forum.org/docs/
  15. 15.
    Rothblum, U.G., Schneider, H., Schneider, M.H.: Scaling matrices to prescribed row and column maxima. SIAM Journal on Matrix Analysis and Applications 15(1), 1–14 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical Report RAL-TR-2001-034 and RT/APO/01/4, Rutherford Appleton Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France (2001)Google Scholar
  17. 17.
    Schneider, M.H., Zenios, S.: A comparative study of algorithms for matrix balancing. Operations Research 38(3), 439–455 (1990)CrossRefMATHGoogle Scholar
  18. 18.
    Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics 21(2), 343–348 (1967)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranaweke, U.A., Packer, C.V.: BEOWULF: A parallel workstation for scientific computation. In: Proceedings of the 24th International Conference on Parallel Processing (1995)Google Scholar
  20. 20.
    Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM Journal on Scientific Computing 25(6), 1827–1859 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Uçar, B., Aykanat, C.: Revisiting hypergraph models for sparse matrix partitioning. SIAM Review 49(4), 595–603 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for parallel sparse matrix-vector multiplication. SIAM Review 47(1), 67–95 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patrick R. Amestoy
    • 1
  • Iain S. Duff
    • 2
    • 3
  • Daniel Ruiz
    • 1
  • Bora Uçar
    • 3
  1. 1.ENSEEIHT-IRITToulouseFrance
  2. 2.Atlas Centre, RALOxonEngland
  3. 3.CERFACSToulouseFrance

Personalised recommendations