A Parallel Matrix Scaling Algorithm

  • Patrick R. Amestoy
  • Iain S. Duff
  • Daniel Ruiz
  • Bora Uçar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5336)


We recently proposed an iterative procedure which asymptotically scales the rows and columns of a given matrix to one in a given norm. In this work, we briefly mention some of the properties of that algorithm and discuss its efficient parallelization. We report on a parallel performance study of our implementation on a few computing environments.


Sparse matrices matrix scaling equilibration parallel computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-vector multiplication. Electronic Transactions on Numerical Analysis 21, 47–65 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Bunch, J.R.: Equilibration of symmetric matrices in the max-norm. Journal of the ACM 18(4), 566–572 (1971)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Burns, G., Daoud, R., Vaigl, J.: LAM: an open cluster environment for MPI. In: Ross, J.W. (ed.) Proceedings of Supercomputing Symposium 1994, pp. 379–386. University of Toronto (1994)Google Scholar
  4. 4.
    Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10(7), 673–693 (1999)CrossRefGoogle Scholar
  5. 5.
    Çatalyürek, Ü.V., Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool, version 3.0. Technical Report BU-CE-9915, Computer Engineering Department, Bilkent University (1999)Google Scholar
  6. 6.
    Çatalyürek, Ü.V., Aykanat, C.: A fine-grain hypergraph model for 2d decomposition of sparse matrices. In: Proceedings of 15th International Parallel and Distributed Processing Symposium (IPDPS), San Francisco, CA (April 2001)Google Scholar
  7. 7.
    Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. IMA Journal of Applied Mathematics 10(1), 118–124 (1972)CrossRefMATHGoogle Scholar
  8. 8.
    Davis, T.A.: University of Florida sparse matrix collection. NA Digest, 92/96/97, 1994/1996/1997, http://www.cise.ufl.edu/research/sparse/matrices
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91(2), 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986)MATHGoogle Scholar
  11. 11.
    Duff, I.S., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and Applications 22(4), 973–996 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing 21(6), 2048–2072 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    HSL: A collection of Fortran codes for large-scale scientific computation (2004), http://www.cse.scitech.ac.uk/nag/hsl
  14. 14.
    MPI: A Message-Passing Interface Standard, Version 2.1 (2008), http://www.mpi-forum.org/docs/
  15. 15.
    Rothblum, U.G., Schneider, H., Schneider, M.H.: Scaling matrices to prescribed row and column maxima. SIAM Journal on Matrix Analysis and Applications 15(1), 1–14 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical Report RAL-TR-2001-034 and RT/APO/01/4, Rutherford Appleton Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France (2001)Google Scholar
  17. 17.
    Schneider, M.H., Zenios, S.: A comparative study of algorithms for matrix balancing. Operations Research 38(3), 439–455 (1990)CrossRefMATHGoogle Scholar
  18. 18.
    Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics 21(2), 343–348 (1967)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranaweke, U.A., Packer, C.V.: BEOWULF: A parallel workstation for scientific computation. In: Proceedings of the 24th International Conference on Parallel Processing (1995)Google Scholar
  20. 20.
    Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM Journal on Scientific Computing 25(6), 1827–1859 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Uçar, B., Aykanat, C.: Revisiting hypergraph models for sparse matrix partitioning. SIAM Review 49(4), 595–603 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for parallel sparse matrix-vector multiplication. SIAM Review 47(1), 67–95 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patrick R. Amestoy
    • 1
  • Iain S. Duff
    • 2
    • 3
  • Daniel Ruiz
    • 1
  • Bora Uçar
    • 3
  1. 1.ENSEEIHT-IRITToulouseFrance
  2. 2.Atlas Centre, RALOxonEngland
  3. 3.CERFACSToulouseFrance

Personalised recommendations