Advertisement

A Systematic Approach to Understanding Bacterial Responses to Oxygen Using Taverna and Webservices

  • S. Maleki-Dizaji
  • M. Rolfe
  • P. Fisher
  • M. Holcombe
Part of the IFMBE Proceedings book series (IFMBE, volume 23)

Abstract

Escherichia coli is a versatile organism that can grow at a wide range of oxygen levels; although heavily studied, no comprehensive knowledge of physiological changes at different oxygen levels is known. Transcriptomic studies have previously examined gene regulation in E. coli grown at different oxygen levels, and during transitions such as from an anaerobic to aerobic environment, but have tended to analyse data in a user intensive manner to identify regulons, pathways and relevant literature. This study looks at gene regulation during an aerobic to anaerobic transition, which has not previously been investigated. We propose a data-driven methodology that identifies the known pathways and regulons present in a set of differentially expressed genes from a transcriptomic study; these pathways are subsequently used to obtain a corpus of published abstracts (from the PubMed database) relating to each biological pathway

Keywords

E. coli Microarray Taverna Workflows Web Services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neidhardt, F. C. (Ed. in Chief), R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds). (1996). Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology. 2 vols. 2898 pages.Google Scholar
  2. 2.
    Rychlik, I. & Barrow, P.A. (2005) Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection FEMS Microbiology reviews 29(5) 1021–1040.CrossRefGoogle Scholar
  3. 3.
    Fisher, P., Hedeler, C., Wolstencroft, K., Hulme, H., Noyes, H., Kemp, S., Stevens, R., Brass, A. A systematic strategy for large-scale analysis of genotype-phenotype correlations: identification of candidate genes involved in African Trypanosomiasis Nucleic Acids Research 2007 35(16): 5625–5633CrossRefGoogle Scholar
  4. 8.
    Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M. and Karp, P.D. (2005) Eco-Cyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Research 33 D334–D337.CrossRefGoogle Scholar
  5. 9.
    Gama-Castro, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Peñaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-Rascado, L., Martínez-Flores, I., Salgado, H., Bonavides-Martínez, C., Abreu-Goodger, C., Rodríguez-Penagos, C., Miranda-Ríos, J., Morett, E., Merino, E., Huerta, A.M., Treviño-Quintanilla, L. and Collado-Vides, J. (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Research. 36 D120–D124CrossRefGoogle Scholar
  6. 10.
    Hobman, J.L., Penn, C.W. and Pallen, M.J. (2007) Laboratory strains of Escherichia coli: model citizens or deceitful delinquents growing old disgracefully? Molecular Microbiology 64(4) 881–885.CrossRefGoogle Scholar
  7. 11.
    Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y. (1997) The complete genome sequence of Escherichia coli K-12 Science 277(5331) 1453–1474.CrossRefGoogle Scholar
  8. 12.
    Evans, C.G.T., Herbert, D. and Tempest, D.W. (1970) The continuous culture of microorganisms. 2. Construction of a chemostat. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 2. Academic Press, London New York, pp 277–327.Google Scholar
  9. 13.
    Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J.C. (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Molecular Microbiology 47(1) 103–118.CrossRefGoogle Scholar

Copyright information

© International Federation of Medical and Biological Engineering 2009

Authors and Affiliations

  • S. Maleki-Dizaji
    • 1
  • M. Rolfe
    • 3
  • P. Fisher
    • 2
  • M. Holcombe
    • 1
  1. 1.Computer ScienceThe University of SheffieldSheffieldUK
  2. 2.Computer ScienceThe University of ManchesterManchesterUK
  3. 3.Department of Molecular Biology and BiotechnologyThe University of SheffieldSheffieldUK

Personalised recommendations