Advertisement

Passive Analog Filter Design Using GP Population Control Strategies

  • Mariano Chouza
  • Claudio Rancan
  • Osvaldo Clua
  • Ramón García-Martínez
Part of the Studies in Computational Intelligence book series (SCI, volume 214)

Abstract

This paper presents the use of two different strategies for genetic programming (GP) population growth control: decreasing the computational effort by plagues and dynamic adjustment of fitness; applied to passive analog filters design based on general topologies. Obtained experimental results show that proposed strategies improve the design process performance.

Keywords

Filter Design Dynamic Adjustment Individual Size Analog Filter Linear Genetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brameier, M.: On Linear Genetic Programming. PhD Thesis. Universität Dortmund. Germany (2004)Google Scholar
  2. 2.
    Fernandez, F., Vanneschi, L., Tomassini, M.: The Effect of Plagues. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 317–326. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Hu, J., Zhong, X., Goodman, E.: Open Ended Robust Design of Analog Filters Using Genetic Programming. In: Proc. 2005 ACM Conf. & and Evolutionary Computation, pp. 1619–1626 (2005)Google Scholar
  4. 4.
    Koller, R., Wilamowski, B.: LADDER. A Microcomputer Tool for Passive Filter Design and Simulation. IEEE Transactions on Education 39(4), 478–487 (1996)CrossRefGoogle Scholar
  5. 5.
    Koza, J., Bennett, F., Andre, D., Keane, M., Dunlap, F.: Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE Transactions on Evolutionary Computations 1(2), 109–128 (1997)CrossRefGoogle Scholar
  6. 6.
    Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Nuhertz Technologies, Passive Filters Solutions (2008), http://www.filter-solutions.com/passive.html (accessed April 10, 2008)
  9. 9.
    Paarmann, L.: Design and Analysis of Analog Filters. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  10. 10.
    Poli, R.: A Simple but Theoretically-Motivated Method to Control Bloat. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Quarles, T.: The SPICE3 Implementation Guide. Memorandum Nro. UCB/ERL M89/44. Electronics Research Laboratory. University of California at Berkeley (1989)Google Scholar
  12. 12.
    Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.): EuroGP 2003. LNCS, vol. 2610. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  13. 13.
    Streeter, M.: The Root Causes of Code Growth. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 443–454. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mariano Chouza
    • 1
  • Claudio Rancan
    • 2
    • 3
  • Osvaldo Clua
    • 4
  • Ramón García-Martínez
    • 1
    • 3
  1. 1.School of Engineering, Intelligent Systems LaboratoryUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Master Program on Software EngineeringBuenos Aires Institute of TechnologyBuenos AiresArgentina
  3. 3.Computer Science School, PhD ProgramUniversity of La PlataLa Plata, Buenos AiresArgentina
  4. 4.School of Engineering, Distributed Systems LaboratoryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations