Strictly Stable High Order Difference Methods for the Compressible Euler and Navier-Stokes Equations

Conference paper

Abstract

High order finite difference methods have been constructed to be strictly stable for linear hyperbolic and parabolic problems. The methods employ high order central approximations in the interior and special boundary stencils to satisfy the summation by parts (SBP) property leading to discrete energy estimates [1][2][3][4][5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods. John Wiley & Sons, New York (1995).MATHGoogle Scholar
  2. 2.
    B. Strand: Summation by Parts for Finite Difference Approximations for \(d/dx\). J. Comput. Physics 110, 47–67 (1994).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.H. Carpenter , D. Gottlieb, S. Abarbanel: Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes. J. Comput. Physics 111, 220-236 (1994).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Nordström, M.H. Carpenter: Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations. J. Comput. Physics 148, 621–645 (1999).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    K. Mattsson, J. Nordström: Finite Difference Approximations of Second Derivatives on Summation by Parts Form, J. Comput. Physics 199, 503–540 (2004).CrossRefMATHGoogle Scholar
  6. 6.
    S. Johansson: High Order Difference Approximations for the Linearized Euler Equations. Licentiate Thesis 2004-006, Department of Information Technology, Uppsala University, Sweden (2004), http://www.it.uu.se/research/publications/lic/2004-006/.
  7. 7.
    A. Harten: On the Symmetric Form of Systems of Conservation Laws with Entropy. J. Comput. Physics, 49, 151–164 (1983).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    E. Tadmor, W. Zhong: Entropy Stable Approximations of Navier-Stokes Equations with no Artificial Numerical Viscosity. J. Hyperbolic Differential Equations 3 (3), 529–559 (2006).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J. Sesterhenn, B. Müller, H. Thomann: On the Cancellation Problem in Calculating Compressible Low Mach Number Flows. J. Comput. Physics 151, 597–615 (1999).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. Müller: Computation of Compressible Low Mach Number Flow. Habilitation Thesis, ETH Zürich (1996).Google Scholar
  11. 11.
    B. Müller, S. Johansson: Strictly Stable High Order Difference Approximations for Low Mach Number Computational Aeroacoustics. In: Proceedings of 4th ECCOMAS Congress 2004, Jyväskylä, Finland, 24-28 July 2004, 19 pages, edited by P. Neittaanmäki, T. Rossi, K. Majava., O. Pironneau, http://user.it.uu.se/~bernd/eccomas2004_bm_sj.pdf.
  12. 12.
    B. Müller: High Order Difference Method for Low Mach Number Aeroacoustics. In: Proceedings of ECCOMAS CFD Conference 2001, Swansea, 4-7 Sept. 2001, 20 pages, http://user.it.uu.se/~bernd/eccomas_cfd2001.pdf.
  13. 13.
    B. Müller, H.C. Yee: High Order Numerical Simulation of Sound Generated by the Kirchhoff Vortex. Computing and Visualization in Science 4, 197–204, (2002).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    B. Müller, H. C. Yee: Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers. J. Scientific Computing 17 (1-4), 181–190 (2002).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    B. Müller, S. Johansson: Strictly Stable High Order Difference Approximations for Computational Aeroacoustics. Comptes Rendus Mecanique 333 (9), 699–705 (2005).CrossRefMATHGoogle Scholar
  16. 16.
    C. Müller: High Order Accurate Numerical Solution of the Linearized Euler Equations for Sound Propagation in the Atmosphere, Master’s Thesis, Uppsala University (2004).Google Scholar
  17. 17.
    B. Müller: High Order Numerical Simulation of Aeolian Tones. Computers & Fluids 37, 450–462 (2008).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    K. Kormann, M. Kronbichler: High Order Finite Difference Approximations for Parabolic and Hyperbolic-Parabolic Problems with Variable Coefficients. Project Report, Division of Scientific Computing, Department of Information Technology, Uppsala University, Sweden (2006).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations