Old-Growth Forests pp 35-54

Part of the Ecological Studies book series (ECOLSTUD, volume 207) | Cite as

Old Trees and the Meaning of ‘Old’



Individual trees with a high age are a characteristic feature of old-growth forests. However, for plants, and here especially for trees, the terms senescence, age and even death are difficult to define. This is partly because humans tend to quantify tree age according to astronomical cycles, more specifically using annual tree rings, while for trees age is a relative quantity related to the pace of ontogenetic deve-lopment. The slower the biological processes unfold, the older individual trees become. This is why the oldest living trees with an age close to 5,000 years are found on extreme sites. Senescence is based on the principle of ‘programmed cell death’, the timing of which may vary between individual cells, tissues types, organs and whole plants. For example, an earlywood tracheid dies after 20 days before it becomes functional as water-conducting tissue, while a neighboring parenchyma cell may survive for 50 years before serving the purpose of mechanical stabilisation as a dead cell. The individual ramets (shoots) of a clonal tree die after 50 years, while the genet may survive for over 10,000 years. In this chapter, we critically discuss different concepts of longevity and review what is known about the variation in and limits to the longevity of woody plants.


  1. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as inciting mortality factor in Scots Pine stands of the Valais, Switzerland. Ecosystems 9:330–343CrossRefGoogle Scholar
  2. Callaghan TV (1973) A comparison of the growth of tundra plant species at several widely separated sites. Research and Development Paper, Institute of Terrestrial Ecology, Merlewood, 53:1–52Google Scholar
  3. Dujesiefken D, Liese W (1991) Baumpflege -- Stand und Kenntnis zur Sanierungszeit, Kronenschnitt und Wundbehandlung. In: Baumpflege in Hamburg. Naturschutz, Landschaftspflege. Hamburg 39:198–238Google Scholar
  4. Fischbach J, Masius H (1879) Deutscher Wald und Hain in Bild und Wort. Bruckmann, MunichGoogle Scholar
  5. Friedrich M, Remele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe -- a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–1122Google Scholar
  6. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  7. Gollwitzer G (1984) Bäume, Bilder und Texte aus drei Jahrtausenden. Schuler, HerrschingGoogle Scholar
  8. Hantemirov RH, Gorlanova LA, Shiyatov SG (2003) Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 209:155–164CrossRefGoogle Scholar
  9. Kihlman AO (1890) Pflanzenbiologische Studien aus Russisch-Lappland. Acta Soc Fauna Flora Fenn 6:1–263Google Scholar
  10. Kobe RK, Pacala SW, Silander JA Jr, Canham CD (1995) Juvenile tree survivorship as a component of shade tolerance. Ecol Appl 5:517–532CrossRefGoogle Scholar
  11. Laberge M-J, Payette S, Bousquet J (2000) Life span and biomass allocation of stunted black spruce clones in the subarctic environment. J Ecol 88:584–593CrossRefGoogle Scholar
  12. Legère A, Payette S (1981) Ecology of a black spruce (Picea mariana) clonal population in the hemiarctic zone, northern Quebec: population dynamics and spatial development. Arct Alp Res 13:261–276CrossRefGoogle Scholar
  13. Lynch AJJ, Barnes RW, Cambecèdes J, Vaillancourt RE (1998) Genetic evidence that Lomatia tasmanica (Proteaceae) is an ancient clone. Austr J Bot 46:25–33CrossRefGoogle Scholar
  14. Molisch H (1938) The longevity of plants. Science, Lancaster, PAGoogle Scholar
  15. Nikolov N, Helmisaari H (1992) Silvics of the circumpolar boreal forest species. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, p 565Google Scholar
  16. Ricklefs E, Finch CE (1995) Aging: a natural history. Scientific American Library, New YorkGoogle Scholar
  17. Schweingruber FH (1995) Tree rings and environment. Dendroecology. Haupt, BernGoogle Scholar
  18. Schweingruber FH (2001) Dendroökologische Holzanatomie. Anatomische Grundlagen der Dendrochronologie. Haupt, BernGoogle Scholar
  19. Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:196–415Google Scholar
  20. Schweingruber FH, Voronin V (1996) Eine dendrochronologisch-bodenchemische Studie aus dem Waldschadengebiet Norilsk, Sibirien, und die Konsequenzen für die Interpretation grossflächiger Kronentaxationsinventuren. Allg Forst- Jagdzg 167:53–67Google Scholar
  21. Schweingruber FH, Börner A, Schulze E-D (2006) Atlas of woody plant stems. Evolution, structure, and environmental modification. Springer, BerlinGoogle Scholar
  22. Schulze E-D, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, windthrow and insects in the dark taiga of Central Siberia. Oecologia 146:77–88CrossRefPubMedGoogle Scholar
  23. Shyiatov SG (1992) The upper timberline dynamics during the last 1100 years in the Polar Ural mountains. In: Frenzel B (ed) Oscilattions of the alpine and polar timberline in the Holocene. Fischer, Stuttgart, pp 195–203Google Scholar
  24. Thomas H, Sadras VO (2001) The capture and gratuitous disposal of resources by plants. Funct Ecol 15:3–12CrossRefGoogle Scholar
  25. Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132CrossRefPubMedGoogle Scholar
  26. Thomas P (2000) Trees: their natural history. Cambridge University Press, CambridgeGoogle Scholar
  27. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  28. White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85CrossRefGoogle Scholar
  29. Wirth C (2005) Fire regime and tree diversity in boreal and high elevation forests: implications for biogeochemical cycles. In: Scherer-Lorenzen M, Körner CH, Schulze E-D (eds) The ecological significance of forest diversity. Ecological studies vol, 176. Springer, New York, pp 309–344CrossRefGoogle Scholar
  30. Zentgraf U, Jobst J, Kolb D, Rentsch D (2004) Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Biol 6:178–183CrossRefPubMedGoogle Scholar
  31. Zimmermann W (1959) Die Phylogenie der Pflanze. Fischer, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Organismic Biogeochemistry GroupMax-Planck-Institute for BiogeochemistryJenaGermany

Personalised recommendations