Advertisement

ATL with Strategy Contexts and Bounded Memory

  • Thomas Brihaye
  • Arnaud Da Costa
  • François Laroussinie
  • Nicolas Markey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5407)

Abstract

We extend the alternating-time temporal logics ATL and ATL* with strategy contexts and memory constraints: the first extension makes strategy quantifiers to not “forget” the strategies being executed by the other players. The second extension allows strategy quantifiers to restrict to memoryless or bounded-memory strategies.

We first consider expressiveness issues. We show that our logics can express important properties such as equilibria, and we formally compare them with other similar formalisms (ATL, ATL*, Game Logic, Strategy Logic, ...). We then address the problem of model-checking for our logics, especially we provide a PSPACE algorithm for the sublogics involving only memoryless strategies and an EXPSPACE algorithm for the bounded-memory case.

Keywords

Nash Equilibrium Model Check Temporal Logic Atomic Proposition Strategy Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with irrevocable strategies. In: Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2007), pp. 15–24 (June 2007)Google Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baier, C., Brázdil, T., Größer, M., Kučera, A.: Stochastic game logic. In: Proceedings of the 4th International Conference on Quantitative Evaluation of Systems (QEST 2007), pp. 227–236. IEEE Comp. Soc. Press, Los Alamitos (2007)CrossRefGoogle Scholar
  4. 4.
    Brihaye, T., Costa, A.D., Laroussinie, F., Markey, N.: ATL with strategy contexts and bounded memory. Technical Report LSV-08-14, Lab. Specification et Verification (February 2008)Google Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. Theoretical Computer Science 365(1-2), 67–82 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronous skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  8. 8.
    Jamroga, W., Dix, J.: Do agents make model checking explode (computationally)? In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 398–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Computation 164(2), 322–344 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of ATL. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 243–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–42. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Pinchinat, S.: A generic constructive solution for concurrent games with expressive constraints on strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Comp. Soc. Press, Los Alamitos (1977)CrossRefGoogle Scholar
  14. 14.
    Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  15. 15.
    Schobbens, P.-Y.: Alternating-time logic with imperfect recall. In: Proceedings of the 1st Workshop on Logic and Communication in Multi-Agent Systems (LCMAS 2003). ENTCS, vol. 85. Elsevier, Amsterdam (2004)Google Scholar
  16. 16.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Arnaud Da Costa
    • 2
  • François Laroussinie
    • 3
  • Nicolas Markey
    • 2
  1. 1.Institut de mathématiquesUniversité de Mons-HainautBelgium
  2. 2.Lab. Spécification & VérificationENS Cachan – CNRS UMR 8643France
  3. 3.LIAFA, Univ. Paris 7 – CNRS UMR 7089France

Personalised recommendations