Conservativity for Logics of Justified Belief

  • Robert S. Milnikel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5407)


In [1], Fitting showed that the standard hierarchy of logics of justified knowledge is conservative (e.g. a logic with positive introspection operator ! is conservative over the logic without !). We do the same with most logics of justified belief, but taking a semantic approach rather than Fitting’s syntactic one. A brief example shows that conservativity does not hold for logics of justified consistent belief.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitting, M.: Explicit logics of knowledge and conservativity. In: Tenth International Symposium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, January 2–4, 2008, Online Proceedings (2008)Google Scholar
  2. 2.
    Artëmov, S.N.: Logic of proofs. Annals of Pure and Applied Logic 67(1–3), 29–59 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Artemov, S.N.: Explicit provability: the intended semantics for intuitionistic and modal logic. Technical Report CFIS 98–10, Cornell University (September 1998)Google Scholar
  4. 4.
    Artemov, S.N.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gödel, K.: Eine interpretation des intuitionistischen aussagenkalküls. Ergebnisse Math. Colloq. 4, 39–40 (1933)MATHGoogle Scholar
  6. 6.
    Brezhnev, V.N.: On the logic of proofs. In: Striegnitz, K. (ed.) Proceedings of the sixth ESSLLI Student Session, Helsinki, pp. 35–46 (August 2001)Google Scholar
  7. 7.
    Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mkrtychev, A.: Models for the Logic of Proofs. In: Adian, S.I., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert S. Milnikel
    • 1
  1. 1.Kenyon CollegeGambierUSA

Personalised recommendations