Fuzzy Description Logic Reasoning Using a Fixpoint Algorithm

  • Uwe Keller
  • Stijn Heymans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5407)

Abstract

We present \({\mathbf{FixIt}}{\mathbb{(ALC)}}\), a novel procedure for deciding knowledge base (KB) satisfiability in the Fuzzy Description Logic (FDL) \({\mathbb{ALC}}\). \({\mathbf{FixIt}}{\mathbb{(ALC)}}\) does not search for tree-structured models as in tableau-based proof procedures, but embodies a (greatest) fixpoint-computation of canonical models that are not necessarily tree-structured, based on a type-elimination process. Soundness, completeness and termination are proven and the runtime and space complexity are discussed. We give a precise characterization of the worst-case complexity of deciding KB satisfiability (as well as related terminological and assertional reasoning tasks) in \({\mathbb{ALC}}\) in the general case and show that our method yields a worst-case optimal decision procedure (under reasonable assumptions). To the best of our knowledge it is the first fixpoint-based decision procedure for FDLs, hence introducing a new class of inference procedures into FDL reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)CrossRefGoogle Scholar
  3. 3.
    Haarslev, V., Pai, H., Shiri, N.: Uncertainty Reasoning for Ontologies with General TBoxes in Description Logic. In: Costa, P.C.G., D’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the Semantic Web I. LNCS (LNAI). Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1), 1–15 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hájek, P.: What does Mathematical Fuzzy Logic offer to Description Logic? In: Fuzzy Logic and the Semantic Web. Capturing Intelligence. Elsevier, Amsterdam (2006)Google Scholar
  6. 6.
    Keller, U., Heymans, S.: On Fixpoint-based Decision Procedures for Fuzzy Description Logics I. Technical Report STI TR 2008-08-07, Semantic Technology Institute (STI), University of Innsbruck (August 2008), http://www.uwekeller.net/publications.html
  7. 7.
    Li, Y., Xu, B., Lu, J., Kang, D.: Discrete Tableau Algorithms for \(\mathcal{FSHI}\). In: Proceedings of the International Workshop on Description Logics, DL (2006)Google Scholar
  8. 8.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. Journal of the ACM 48(5), 909–970 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K. Journal of Applied Non-Classical Logics 16(1-2), 169–208 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and Abstract Syntax. Candidate Recommendation August 18, 2003, W3C (2003)Google Scholar
  12. 12.
    Pratt, V.R.: A Near-Optimal Method for Reasoning about Action. J. Comput. Syst. Sci. 20(2), 231–254 (1980)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI 1991), pp. 466–471 (1991)Google Scholar
  14. 14.
    Schmidt-Schauß, M., Smolka, G.: Attributive Concept Descriptions with Complements. Artif. Intell. 48(1), 1–26 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Stoilos, G., Stamou, G.B., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res (JAIR) 30, 273–320 (2007)MathSciNetMATHGoogle Scholar
  16. 16.
    Stoilos, G., Straccia, U., Stamou, G., Pan, J.: General Concept Inclusions in Fuzzy Description Logics. In: Proceedings of the 17th Eureopean Conference on Artificial Intelligence (ECAI 2006), pp. 457–461. IOS Press, Amsterdam (2006)Google Scholar
  17. 17.
    Straccia, U.: Reasoning within Fuzzy Description Logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  18. 18.
    Straccia, U.: Transforming Fuzzy Description Logics into Classical Description Logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 385–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Straccia, U.: A Fuzzy Description Logic for the Semantic Web. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, ch. 4, pp. 73–90. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  20. 20.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware & Soft Computing 14(3), 247–259 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    Tobies, S.: Complexity results and practical algorithms for logics in Knowledge Representation. Phd thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Uwe Keller
    • 1
  • Stijn Heymans
    • 2
  1. 1.Semantic Technology Institute (STI) InnsbruckUniversity of InnsbruckAustria
  2. 2.Knowledge-based Systems Group, Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations