Large-Scale Networked Systems: From Anarchy to Geometric Self-structuring

  • Anne-Marie Kermarrec
  • Achour Mostefaoui
  • Michel Raynal
  • Gilles Tredan
  • Aline C. Viana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5408)


We define geometric self-structuring in a large-scale networked system as the ability of the participating nodes to collaboratively impose a geometric structure to the network. Self-structuring is hard to achieve when no global positioning information about the network is available. Yet this is an useful capability in networked autonomous systems such as sensor networks. In this paper, we present the design and the evaluation of a fully decentralized geometric self-structuring approach. This approach heavily relies on the ability of each node to estimate its position in the network. The contribution of the paper is twofold: (i) a simple and fully decentralized virtual coordinated system (VINCOS) is proposed, relying only on local connectivity information and per-neighbor communication; (ii) a network geometric self-structuring approach (NetGeoS) is presented that enables a large set of nodes to configure themselves in arbitrary geometric structures. The evaluation shows that the approach is both efficient and accurate while achieving the geometric structuring.


Sensor Network Geometric Structure External Knowledge Equator Group Border Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bischoff, R., Wattenhoffer, R.: Analyzing Connectivity-Based, Multi-hop Positioning System. In: Proc. of IEEE Percom, pp. 165–176 (March 2004)Google Scholar
  2. 2.
    He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.: Range-free Localization Schemes in Large Scale Sensor Networks. ACM Mobicom, 81–95 (2003)Google Scholar
  3. 3.
    Ben Hamida, E., Chelius, G.: Analytical Evaluation of Virtual Infrastructures for Data Dissemination in Wireless Sensor Networks with Mobile Sink. In: SANET 2007 (September 2007)Google Scholar
  4. 4.
    Moscibroda, T., O’Dell, R., Wattenhoffer, M.R.: Virtual Coordinates for Ad Hoc and Sensor Networks. In: ACM Workshop DIAL-POMC, pp. 8–16 (2004)Google Scholar
  5. 5.
    Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic Routing without Location Information. In: Mobicom, pp. 96–108. ACM Press, New York (2003)Google Scholar
  7. 7.
    Kermarrec, A.-M., Mostéfaoui, A., Raynal, M., Trédan, G., Viana, A.C.: Large-scale networked systems: from anarchy to geometric self-structuring. Tech Report #1876, 19 pages, IRISA, Université de Rennes (December 2007)Google Scholar
  8. 8.
    Benbadis, F., Obraczka, K., Cortès, J., Brandwajn, A.: Exploring landmark placement strategies for self-organization in wireless sensor networks. Eurasip Journal on Advances in Signal Processing (to appear, 2008)Google Scholar
  9. 9.
    Benbadis, F., Friedman, T., Amorim, M.D., Fdida, S.: GPS-free-free positioning system for sensor networks. In: Proc. of WOCN, pp. 541–545 (April 2005)Google Scholar
  10. 10.
    Caruso, A., Chessa, S., De, S., Urpi, A.: GPS free coordinate assignment and routing in wireless sensor netwoks. Infocom, 150–160 (2005)Google Scholar
  11. 11.
    Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.: Localization from mere connectivity. In: Proc. of ACM Mobihoc, pp. 201–212 (June 2003)Google Scholar
  12. 12.
    Gustafsson, F., Gunnarsson, F.: Positioning using time-difference of arrival measurements. In: Proc. of ICASSP, vol. 6, pp. VI-553–556 (April 2003)Google Scholar
  13. 13.
    Doherty, L., Pister, K.S.J., El, G.L.: Convex position estimation in wireless sensor networks. In: Proc. of IEEE Infocom, pp. 1655–1663 (April 2001)Google Scholar
  14. 14.
    Dohler, M., Watteyne, T., Barthel, D., Valois, F., Lu, J.-L.: Kumar‘s, Zipf‘s and Other Laws: How to Structure an Optimum Large-Scale Wireless (Sensor) Network? In: 13th European Wireless Conference (April 2007)Google Scholar
  15. 15.
    Benbadis, F., Puig, J.-J., Amorim, M.D., Chaudet, C., Friedman, T., Simplot-Ryl, D.: JUMP: Enhancing hop-count positioning in sensor network using multiple coordinates. Ad Hoc and Sensor Wireless Networks Journal (to appear, 2008)Google Scholar
  16. 16.
    Pemmaraju, S.V., Pirwani, I.A.: Good quality virtual realization of unit ball graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anne-Marie Kermarrec
    • 1
  • Achour Mostefaoui
    • 2
  • Michel Raynal
    • 2
  • Gilles Tredan
    • 2
  • Aline C. Viana
    • 3
  1. 1.INRIA Rennes-IRISAFrance
  2. 2.Université de Rennes 1-IRISAFrance
  3. 3.INRIA SaclayFrance

Personalised recommendations