Advertisement

Representation of Complex Concepts for Semantic Routed Network

  • Amitava Biswas
  • Suneil Mohan
  • Jagannath Panigrahy
  • Aalap Tripathy
  • Rabi Mahapatra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5408)

Abstract

Semantic Routed Network (SRN) can provide a scalable distributed solution for searching data in a large grid. In SRN, messages are routed in a overlay network based on the meaning of the message key. If the message key describes the desired data, then SRN nodes can be addressed and accessed by the description of their data content. The key challenges of materializing a SRN are: (1) designing a data structure which will represent complex descriptions of data objects; (2) computing similarity of descriptors; and (3) constructing a small world network topology that minimize the routing response time and maximize routing success, which depends on solving the first two problems. We present a design of a descriptor data structure and a technique to compare their similarity to address the first two problems.

Keywords

Semantic similarity semantic routing P2P systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergman, M.: The Deep Web: Surfacing Hidden Value, White Paper (2001)Google Scholar
  2. 2.
  3. 3.
    SRS Server at EMBI-EBI, http://srs.ebi.ac.uk
  4. 4.
    Biswas, A., Mohan, S., Mahapatra, R.: Optimization of Semantic Routing Table. In: 17th International Conference on Computer Communications and Networks (2008)Google Scholar
  5. 5.
    Tempich, C., Staab, S., Wranik, A.: REMINDIN: Semantic Query Routing in Peer-to-Peer Networks Based on Social Metaphors. In: 13th Int. WWW Conf., pp. 640–649 (2004)Google Scholar
  6. 6.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  7. 7.
    Yang, D., Powers, D.M.: Measuring semantic similarity in the taxonomy of WordNet. In: 28th Australasian Conference on Computer Science, vol. 38 (2005)Google Scholar
  8. 8.
    Hariri, B.H., Abolhassani, H., Khodaei, A.: A New Structural Similarity Measure for Ontology Alignment. In: Int. Conf. on Semantic Web & Web Services, pp. 36–42 (2006)Google Scholar
  9. 9.
    Lemaire, B., Denhière, G.: Incremental Construction of an Associative Network from a Corpus. In: 26th Annual Meeting of the Cognitive Science Society, pp. 825–830 (2004)Google Scholar
  10. 10.
    Rajapske, R., Denham, M.: Text retrieval with more realistic concept matching and reinforcement learning. Info. Processing and Management 42, 1260–1275 (2006)CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Bottini, N., et al.: A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genetics 36, 337–338 (2004)CrossRefGoogle Scholar
  14. 14.
    Irgens, F.: Tensors. Continuum Mechanics. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amitava Biswas
    • 1
  • Suneil Mohan
    • 1
  • Jagannath Panigrahy
    • 1
  • Aalap Tripathy
    • 1
  • Rabi Mahapatra
    • 1
  1. 1.Department of Computer ScienceTexas A&M UniversityUSA

Personalised recommendations