From a Circular-Arc Model to a Proper Circular-Arc Model

  • Yahav Nussbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5344)

Abstract

We are given a circular-arc graph, represented by a circular-arc model; our goal is to decide whether the graph is a proper circular-arc graph. We do so in time linear in the number of vertices of the graph, regardless of the number of edges which may be quadratic in the number of vertices. For every input graph, we either provide a proper circular-arc model for the graph, or a forbidden subgraph induced in the graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deng, X., Hell, P., Huang, J.: Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs. SIAM J. Comput. 25, 390–403 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  3. 3.
    Golumbic, M.C., Hammer, P.L.: Stability in Circular Arc Graphs. J. Algorithms 9, 314–320 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hsu, W.L.: O(mn) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs. SIAM J. Comput. 24, 411–439 (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Hsu, W.L., Tsai, K.H.: Linear Time Algorithms on Circular-Arc Graphs. Info. Proc. Lett. 40, 123–129 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Joeris, B.L., Lin, M.C., McConnell, R.M., Spinrad, J.P., Szwarcfiter, J.L.: Linear Time Recognition of Helly Circular-Arc Models and Graphs (submitted) Google Scholar
  7. 7.
    Kaplan, H., Nussbaum, Y.: Certifying Algorithms for Recognizing Proper Circular-Arc Graphs and Unit Circular-Arc Graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 289–300. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kaplan, H., Nussbaum, Y.: A Simpler Linear-Time Recognition of Circular-Arc Graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 41–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lin, M.C., Szwarcfiter, J.L.: Efficient Construction of Unit Circular-Arc Models. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 309–315. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly Circular-Arc Graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 248–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Manacher, G.K., Mankus, T.A.: A Simple Linear Time Algorithm for Finding a Maximum Independent Set of Circular Arcs Using Intervals Alone. Networks 39, 68–72 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Masuda, S., Nakajima, K.: An Optimal Algorithm for Finding a Maximum Independent Set of a Circular-Arc Graph. SIAM J. Comput. 17, 41–52 (1988)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    McConnell, R.M.: Linear-Time Recognition of Circular-Arc Graphs. Algorithmica 37, 93–147 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Roberts, F.S.: Indifference Graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory: Proceedings of the Second Ann Arbor Conference, pp. 139–146. Academic Press, London (1969)Google Scholar
  15. 15.
    Shih, W.K., Hsu, W.L.: An O(n 1.5) Algorithm to Color Proper Circular Arcs. Discrete Applied Mathematics 25, 321–323 (1989)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Spinrad, J.P.: Efficient Graph Representations. In: Fields Institute Monographs, vol. 19. American Mathematical Society, Providence (2003)Google Scholar
  17. 17.
    Tucker, A.: Structure Theorems for Some Classes of Circular-Arc Graphs. Discrete Mathematics 7, 167–195 (1974)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tucker, A.: An Efficient Test for Circular-Arc Graphs. SIAM J. Comput. 9, 1–24 (1980)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yahav Nussbaum
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations