Advertisement

Improved Upper Bounds for Partial Vertex Cover

  • Joachim Kneis
  • Alexander Langer
  • Peter Rossmanith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5344)

Abstract

The Partial Vertex Cover problem is to decide whether a graph contains at most k nodes covering at least t edges. We present deterministic and randomized algorithms with run times of O *(1.396 t ) and O *(1.2993 t ), respectively. For graphs of maximum degree three, we show how to solve this problem in O *(1.26 t ) steps. Finally, we give an O *(3 t ) algorithm for Exact Partial Vertex Cover, which asks for at most k nodes covering exactly t edges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bar-Yehuda, R.: Using homogenous weights for approximating the partial cover problem. In: Proc. of 10th SODA, pp. 71–75 (1999)Google Scholar
  3. 3.
    Bläser, M.: Computing small partial coverings. Inf. Proc. Letters 85, 327–331 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover. Technical Report TR05-008, School of CTI, DePaul University (2005)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 873–921 (1992)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fomin, F., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Technical Report 359, Department of Informatics, University of Bergen (July 2007)Google Scholar
  9. 9.
    Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. Journal of Algorithms 53, 55–84 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Halperin, E., Srinivasan, R.: Improved approximation algorithms for the partial vertex cover problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 185–199. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality framework with budget constraints. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Intuitive algorithms and t-vertex cover. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 598–607. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Informatica 22, 115–123 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical Report 1251-01, Université Bordeaux I, LaBRI (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joachim Kneis
    • 1
  • Alexander Langer
    • 1
  • Peter Rossmanith
    • 1
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany

Personalised recommendations