Multiple Scrambling and Adaptive Synchronization for Audio Watermarking

  • Yiqing Lin
  • Waleed H. Abdulla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

Imperceptibility, robustness and security are the vital considerations in the design of any audio watermarking scheme for copyrights protection. In this paper, a secure and robust audio watermarking scheme involving multiple scrambling and adaptive synchronization is proposed. To prevent the unauthorized detection, the new scheme integrates multiple scrambling operations into the embedding process. That is, encrypting the watermark with a coded-image and randomly selecting certain subbands for the embedding process. Moreover, the detection utilizes adaptive synchronization to enhance the robustness under some destructive de-synchronization attacks, like random samples cropping/inserting, pitch-invariant time stretching, and tempo-preserved pitch shifting. Theoretical analysis and simulation results have revealed that the proposed scheme is self-secured indeed and also immune to a wide range of severe attacks.

Keywords

audio watermarking information hiding copyrights protection multimedia watermarking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erküçük, S., Krishnan, S., Zeytinoǧlu, M.: A Robust Audio Watermark Representation Based on Linear Chirps. IEEE Transactions on Multimedia 8(5), 925–936 (2006)CrossRefGoogle Scholar
  2. 2.
    Petitcolas, F.A.P.: Watermarking Schemes Evaluation. IEEE Signal Processing Magazine 17(5), 58–64 (2000)CrossRefGoogle Scholar
  3. 3.
    Hartung, F., Kutter, M.: Multimedia Watermarking Techniques. Proceedings of the IEEE 87(7), 1079–1107 (1999)CrossRefGoogle Scholar
  4. 4.
    Dittmann, J., Steinebach, M., Lang, A., Zmudizinski, S.: Advanced Audio Watermarking Benchmarking. In: Proceedings of SPIE International Symposium Electronic Imaging, vol. 5306, pp. 224–235 (2004)Google Scholar
  5. 5.
    Swanson, M.D., Zhu, B., Tewfik, A.H., Boney, L.: Robust Audio Watermarking Using Perceptual Masking. Signal Processing 66(3), 337–355 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Tachibana, R., Shimizu, S., Kobayashi, S.: An Audio Watermarking Method Using A Two-dimensional Pseudo-random Array. Signal Processing 82(10), 1455–1469 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Xiang, S.J., Huang, J.W., Yang, R., Wang, C.T., Liu, H.M.: Robust Audio Watermarking Based on Low-Order Zernike Moments. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 226–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Li, W., Xue, X.: Audio Watermarking Based on Music Content Analysis Robust Against Time Scale Modification. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 289–300. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Xiang, S.J., Huang, J.W., Yang, R.: Time-Scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lin, Y.Q., Abdulla, W.H.: Robust Audio Watermarking Technique Based on Gammatone Filterbank and Coded-Image. In: International Symposium on Signal Processing and Its Application (ISSPA 2007) (2007)Google Scholar
  11. 11.
    Lin, Y.Q., Abdulla, W.H.: Robust Audio Watermarking for Copyrights Protection. Technical Report (No. 650), Department of Electrical & Computer Engineering, The University of Auckland (2006), http://www.ece.auckland.ac.nz/~wabd002/Publications
  12. 12.
    Kirovski, D., Malvar, H.S.: Spread-spectrum Watermarking of Audio Signals. IEEE Transactions on Signal Processing 51(4), 1020–1033 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Abdulla, W.H.: Auditory Based Feature Vectors for Speech Recognition Systems. In: Mastorakis, N.E., Kluev, V.V. (eds.) Advances in Communications and Software Technologies, pp. 231–236. WSEAS Press (2002)Google Scholar
  14. 14.
    Gurijala, A., Deller Jr., J.R.: Robust Algorithm for Watermark Recovery from Cropped Speech. In: IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP 2001), vol. 3, pp. 1357–1360 (2001)Google Scholar
  15. 15.
    ISO/IEC 11172-3: Information Technology - Coding of Moving Picture and Associated Audio for Digital Storage Media Up To About 1.5Mbit/s. British Standard. BSI London (1993)Google Scholar
  16. 16.
    Tachibana, R.: Improving Audio Watermarking Robustness Using Stretched Patterns Against Geometric Distortion. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 647–654. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    EBU: SQAM - Sound Quality Assessment Material, http://sound.media.mit.edu/mpeg4/audio/sqam/
  18. 18.
    Kabal, P.: An Examination and Interpretation of ITU-R BS.1387: Perceptual Evaluation of Audio Quality. TSP Lab Technical Report, Department of Electrical & Computer Engineering, McGill University (2003), http://www.TSP.ECE.McGill.CA/MMSP/Documents
  19. 19.
    Spanias, A.S.: Speech Coding: A Tutorial Review. Proceedings of the IEEE 82(10), 1541–1582 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yiqing Lin
    • 1
  • Waleed H. Abdulla
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of AucklandNew Zealand

Personalised recommendations