Optimum Histogram Pair Based Image Lossless Data Embedding

  • Guorong Xuan
  • Yun Q. Shi
  • Peiqi Chai
  • Xia Cui
  • Zhicheng Ni
  • Xuefeng Tong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)

Abstract

This paper presents an optimum histogram pair based image lossless data embedding scheme using integer wavelet transform and adaptive histogram modification. This new scheme is characterized by (1) the selection of best threshold T, which leads to the highest PSNR of the marked image for a given payload, (2) the adaptive histogram modification, which aims at avoiding underflow and/or overflow, is carried out only when it is necessary, and treats the left side and the right side of histogram individually, seeking a minimum amount of histogram modification, and (3) the selection of most suitable embedding region, which attempts to further improve the PSNR of the marked image in particular when the payload is low. Consequently, it can achieve the highest visual quality of marked image for a given payload as compared with the prior arts of image lossless data hiding. The experimental results have been presented to confirm the claimed superior performance.

Keywords

Optimum histogram pair lossless data embedding integer wavelets selection of best threshold adaptive histogram modification selection of suitable embedding region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology 16(3), 354–362 (2006)CrossRefGoogle Scholar
  2. 2.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 890–896 (August 2003)Google Scholar
  3. 3.
    Kamstra, L., Heijmans, H.J.A.M.: Reversible data embedding into images using wavelet techniques and sorting. IEEE transactions on image processing 14(12), 2082–2090 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Xuan, G., Shi, Y.Q., Yang, C., Zheng, Y., Zou, D., Chai, P.: Lossless data hiding using integer wavelet transform and threshold embedding technique. In: IEEE International Conference on Multimedia and Expo (ICME 2005), Amsterdam, Netherlands, July 6-8 (2005)Google Scholar
  5. 5.
    Xuan, G., Shi, Y.Q., Yao, Q., Ni, Z., Yang, C., Gao, J., Chai, P.: Lossless data hiding using histogram shifting method based on integer wavelets. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Yang, B., Schmucker, M., Funk, W., Busch, C., Sun, S.: Integer DCT-based reversible watermarking for images using companding technique. In: Proceedings of SPIE, Security and Watermarking of Multimedia Content, Electronic Imaging, San Jose, CA, USA (January 2004)Google Scholar
  7. 7.
    Lee, S., Yoo, C.D., Kalker, T.: Reversible Image Watermarking Based on Integer-to-Integer Wavelet Transform. IEEE Transactions on Information Forensics and Security 2(3) Part 1 (September 2007)Google Scholar
  8. 8.
    Coltuc, D., Chassery, J.M.: Very fast watermarking by reversible contrast mapping. IEEE Signal Processing Letters 14(4), 255–258 (2007)CrossRefGoogle Scholar
  9. 9.
    Coltuc, D.: Improved capacity reversible watermarking. In: International Conference on Image Processing (ICIP), San Antonio, Texas, USA, September 16-19, 2007, pp. III-249–252 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guorong Xuan
    • 1
  • Yun Q. Shi
    • 2
  • Peiqi Chai
    • 1
  • Xia Cui
    • 1
  • Zhicheng Ni
    • 1
  • Xuefeng Tong
    • 1
  1. 1.Dept. of Computer ScienceTongji UniversityShanghaiChina
  2. 2.Dept. of ECENew Jersey Institute of Technology, NewarkNew JerseyUSA

Personalised recommendations