Advertisement

Using Fuzzy DLs to Enhance Semantic Image Analysis

  • Stamatia Dasiopoulou
  • Ioannis Kompatsiaris
  • Michael G. Strintzis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5392)

Abstract

Research in image analysis has reached a point where detectors can be learned in a generic fashion for a significant number of conceptual entities. The obtained performance however exhibits versatile behaviour, reflecting implications over the training set selection, similarities in visual manifestations of distinct conceptual entities, and appearance variations of the conceptual entities. In this paper, we investigate the use of formal semantics in order to benefit from the logical associations between the conceptual entities, and thereby alleviate part of the challenges involved in extracting semantic descriptions. More specifically, a fuzzy DL based reasoning framework is proposed for the extraction of enhanced image descriptions based on an initial set of graded annotations, generated through generic image analysis techniques. Under the proposed reasoning framework, the initial descriptions are integrated and further enriched at a semantic level, while additionally inconsistencies emanating from conflicting descriptions are resolved. Experimentation in the domain of outdoor images has shown very promising results, demonstrating the added value in terms of accuracy and completeness of the resulting content descriptions.

Keywords

Description Logic Level Concept Formal Semantic Conceptual Entity Semantic Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  2. 2.
    Rao, A., Jain, R.: Knowledge representation and control in computer vision systems. In: IEEE Expert, pp. 64–79 (1988)Google Scholar
  3. 3.
    Draper, B., Hanson, A., Riseman, E.: Knowledge-directed vision: control, learning and integration. Proc. of the IEEE 84(11), 1625–1681 (1996)CrossRefGoogle Scholar
  4. 4.
    Little, S., Hunter, J.: Rules-by-example - a novel approach to semantic indexing and querying of images. In: International Semantic Web Conference (ISWC), Hiroshima, Japan, November 7-11, pp. 534–548 (2004)Google Scholar
  5. 5.
    Schober, J.P., Hermes, T., Herzog, O.: Content-based image retrieval by ontology-based object recognition. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Neumann, B., Moller, R.: On scene interpretation with description logics (FBI-B-257/04) (2004)Google Scholar
  7. 7.
    Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V.K., Strintzis, M.G.: Knowledge-assisted semantic video object detection. IEEE Trans. Circuits Syst. Video Techn. 15(10), 1210–1224 (2005)CrossRefGoogle Scholar
  8. 8.
    Espinosa, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia interpretation as abduction. In: Proc. International Workshop on Description Logics (DL), Brixen-Bressanone, Italy, June 8-10 (2007)Google Scholar
  9. 9.
    Hollink, L., Little, S., Hunter, J.: Evaluating the application of semantic inferencing rules to image annotation. In: Proc. International Conference on Knowledge Capture (K-CAP), Banff, Alberta, Canada, October 2-5, pp. 91–98 (2005)Google Scholar
  10. 10.
    Petridis, K., Bloehdorn, S., Saathoff, C., Simou, N., Dasiopoulou, S., Tzouvaras, V., Handschuh, S., Avrithis, Y., Kompatsiaris, I., Staab, S.: Knowledge representation and semantic annotation of multimedia content. In: IEE Proceedings on Vision Image and Signal Processing, Special issue on Knowledge-Based Digital Media Processing 153 (June 2006)Google Scholar
  11. 11.
    Bagdanov, A., Bertini, M., DelBimbo, A., Serra, G., Torniai, C.: Semantic annotation and retrieval of video events using multimedia ontologies. In: Proc. IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA (2007)Google Scholar
  12. 12.
    Dasiopoulou, S., Heinecke, J., Saathoff, C., Strintzis, M.: Multimedia reasoning with natural language support. In: Proc. IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA, September 17-19 (2007)Google Scholar
  13. 13.
    Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, pp. 73–90. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  14. 14.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: The fuzzy description logic f-SHIN. In: International Workshop on Uncertainty Reasoning For the Semantic Web (URSW), Galway, Ireland, November 7 (2005)Google Scholar
  15. 15.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: Theory, implementation, and applications. In: Description Logic Handbook. Cambridge University Press, Cambridge (2003)Google Scholar
  16. 16.
    Stoilos, G., Stamou, G., Pan, J.: Handling imprecise knowledge with fuzzy description logic. In: Proc. International Workshop on Description Logics (DL), Lake District, UK (2006)Google Scholar
  17. 17.
    Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res (JAIR) 14, 137–166 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Proc. European Conference on Logics in Artificial Intelligence (JELIA), Lisbon, Portugal, September 27-30, pp. 385–399 (2004)Google Scholar
  19. 19.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Proc. of International Semantic Web Conference (ISWC), Galway, Ireland, November 6-10, pp. 353–367 (2005)Google Scholar
  20. 20.
    Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts in owl ontologies. In: Proc. of European Semantic Web Conference (ESWC), Budva, Montenegro, June 11-14, pp. 170–184 (2006)Google Scholar
  21. 21.
    LeBorgne, H., Guérin-Dugué, A., O’Connor, N.E.: Learning midlevel image features for natural scene and texture classification. IEEE Trans. Circuits Syst. Video Techn. 17(3), 286–297 (2007)CrossRefGoogle Scholar
  22. 22.
    Moosmann, F., Triggs, B., Jurie, F.: Randomized clustering forests for building fast and discriminative visual vocabularies. In: Neural Information Processing Systems (NIPS) (November 2006)Google Scholar
  23. 23.
    Moller, R., Neumann, B., Wessel, M.: Towards computer vision with description logics: Some recent progress. In: Proceedings Integration of Speech and Image Understanding, Corfu, Greece, pp. 101–115 (1999)Google Scholar
  24. 24.
    Umberto, S., Giulio, V.: Dlmedia: an ontology mediated multimedia information retrieval system. In: Proc. International Workshop on Description Logics (DL), Brixen-Bressanone, Italy, June 8-10 (2007)Google Scholar
  25. 25.
    Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with f-shin. In: 2nd International Workshop on Semantic Media Adaptation and Personalization, London, UK (2007)Google Scholar
  26. 26.
    Mylonas, P., Simou, N., Tzouvaras, V., Avrithis, Y.: Towards semantic multimedia indexing by classification and reasoning on textual metadata. In: Knowledge Acquisition from Multimedia Content Workshop, Genova, Italy (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stamatia Dasiopoulou
    • 1
    • 2
  • Ioannis Kompatsiaris
    • 2
  • Michael G. Strintzis
    • 1
  1. 1.Information Processing Laboratory, Electrical and Computer Engineering DepartmentAristotle University of ThessalonikiGreece
  2. 2.Multimedia Knowledge LaboratoryInformatics and Telematics InstituteThessalonikiGreece

Personalised recommendations