Computing and Updating the Process Number in Trees

  • David Coudert
  • Florian Huc
  • Dorian Mazauric
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5401)

Abstract

The process number is the minimum number of requests that have to be simultaneously disturbed during a routing reconfiguration phase of a connection oriented network. From a graph theory point of view, it is similar to the node search number, and thus to the pathwidth, however they are not always equal. In general determining these parameters is NP-complete.

We present a distributed algorithm to compute these parameters and the edge search number, in trees. It can be executed in an asynchronous environment, requires n steps, an overall computation time of O(nlogn), and n messages of size log3n + 2. Then, we propose a distributed algorithm to update these parameters on each component of a forest after addition or deletion of any tree edge. This second algorithm requires O(D) steps, an overall computation time of O(Dlogn), and O(D) messages of size log3n + 3, where D is the diameter of the new connected component.

Keywords

Pathwidth process number distributed algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Combin. Theory Ser. B 35, 39–61 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Scheffler, P.: A linear algorithm for the pathwidth of trees. In: Bodendiek, R., Henn, R. (eds.) Topics in Combinatorics and Graph Theory, pp. 613–620. Physica-Verlag, Heidelberg (1990)CrossRefGoogle Scholar
  4. 4.
    Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time. Journal of Algorithms 47, 40–59 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kirousis, M., Papadimitriou, C.: Searching and pebbling. Theoretical Computer Science 47, 205–218 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fomin, F., Thilikos, D.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399, 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)CrossRefGoogle Scholar
  8. 8.
    Coudert, D., Perennes, S., Pham, Q.C., Sereni, J.S.: Rerouting requests in wdm networks. In: AlgoTel 2005, Presqu’île de Giens, France, pp. 17–20 (2005)Google Scholar
  9. 9.
    Coudert, D., Sereni, J.S.: Characterization of graphs and digraphs with small process number. Research Report 6285, INRIA (2007)Google Scholar
  10. 10.
    Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. Assoc. Comput. Mach. 35, 18–44 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kinnersley, N.G.: The vertex separation number of a graph equals its pathwidth. Information Processing Letters 42, 345–350 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Coudert, D., Huc, F., Mazauric, D.: A distributed algorithm for computing and updating the process number of a forest. Research Report 6560, INRIA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Coudert
    • 1
  • Florian Huc
    • 1
  • Dorian Mazauric
    • 1
  1. 1.Mascotte, INRIA, I3S, CNRSUniversity of Nice Sophia AntipolisFrance

Personalised recommendations