Fast, Accurate and Precise Mid-Sagittal Plane Location in 3D MR Images of the Brain

  • Felipe P. G. Bergo
  • Alexandre X. Falcão
  • Clarissa L. Yasuda
  • Guilherme C. S. Ruppert
Part of the Communications in Computer and Information Science book series (CCIS, volume 25)

Abstract

Extraction of the mid-sagittal plane (MSP) is a key step for brain image registration and asymmetry analysis. We present a fast MSP extraction method for 3D MR images, based on automatic segmentation of the brain and on heuristic maximization of the cerebro-spinal fluid within the MSP. The method is robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and lesions. The method is also accurate with respect to MSP delineations done by a specialist. The method was evaluated on 64 MR images (36 pathological, 20 healthy, 8 synthetic), and it found a precise and accurate approximation of the MSP in all of them with a mean time of 60.0 seconds per image, mean angular variation within a same image (precision) of 1.26o and mean angular difference from specialist delineations (accuracy) of 1.64o.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, R.J., Hugdahl, K.: Brain Asymmetry. MIT Press/Bradford Books (1996)Google Scholar
  2. 2.
    Crow, T.J.: Schizophrenia as an anomaly of cerebral asymmetry. In: Maurer, K. (ed.) Imaging of the Brain in Psychiatry and Related Fields, pp. 3–17. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Geschwind, N., Levitsky, W.: Human brain: Left-right asymmetries in temporale speech region. Science 161, 186–187 (1968)CrossRefPubMedGoogle Scholar
  4. 4.
    Wang, L., Joshi, S.C., Miller, M.I., Csernansky, J.G.: Statistical analysis of hippocampal asymmetry in schizophrenia. NeuroImage 14, 531–545 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    Csernansky, J.G., Joshi, S., Wang, L., Haller, J.W., Gado, M., Miller, J.P., Grenander, U., Miller, M.I.: Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proceedings of the National Academy of Sciences of the United States of America 95, 11406–11411 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Styner, M., Gerig, G.: Hybrid boundary-medial shape description for biologically variable shapes. In: Proc. of IEEE Workshop on Mathematical Methods in Biomedical Imaging Analysis (MMBIA), pp. 235–242. IEEE, Los Alamitos (2000)Google Scholar
  7. 7.
    Mackay, C.E., Barrick, T.R., Roberts, N., DeLisi, L.E., Maes, F., Vandermeulen, D., Crow, T.J.: Application of a new image analysis technique to study brain asymmetry in schizophrenia. Psychiatry Research 124, 25–35 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Highley, J.R., DeLisi, L.E., Roberts, N., Webb, J.A., Relja, M., Razi, K., Crow, T.J.: Sex-dependent effects of schizophrenia: an MRI study of gyral folding, and cortical and white matter volume. Psychiatry Research: Neuroimaging 124, 11–23 (2003)CrossRefPubMedGoogle Scholar
  9. 9.
    Barrick, T.R., Mackay, C.E., Prima, S., Maes, F., Vandermeulen, D., Crow, T.J., Roberts, N.: Automatic analysis of cerebral asymmetry: na exploratory study of the relationship between brain torque and planum temporale asymmetry. NeuroImage 24, 678–691 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    Hogan, R.E., Mark, K.E., Choudhuri, I., Wang, L., Joshi, S., Miller, M.I., Bucholz, R.D.: Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy. J. Digital Imaging 13, 217–218 (2000)CrossRefGoogle Scholar
  11. 11.
    Wu, W.C., Huang, C.C., Chung, H.W., Liou, M., Hsueh, C.J., Lee, C.S., Wu, M.L., Chen, C.Y.: Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: Evaluations with MR volumetry and proton MR spectroscopy. AJNR Am. J. Neuroradiol. 26, 1270–1275 (2005)PubMedGoogle Scholar
  12. 12.
    Csernansky, J.G., Wang, L., Joshi, S., Miller, J.P., Gado, M., Kido, D., McKeel, D., Morris, J.C., Miller, M.I.: Early DAT is distinguished from aging by High-dimensional Mapping of the hippocampus. Neurology 55, 1636–1643 (2000)CrossRefPubMedGoogle Scholar
  13. 13.
    Liu, Y., Teverovskiy, L.A., Lopez, O.L., Aizenstein, H., Meltzer, C.C., Becker, J.T.: Discovery of biomarkers for alzheimer’s disease prediction from structural MR images. In: 2007 IEEE Intl. Symp. on Biomedical Imaging, pp. 1344–1347. IEEE, Los Alamitos (2007)Google Scholar
  14. 14.
    Ardekani, B., Kershaw, J., Braun, M., Kanno, I.: Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Trans. on Medical Imaging 16, 947–952 (1997)CrossRefPubMedGoogle Scholar
  15. 15.
    Kapouleas, I., Alavi, A., Alves, W.M., Gur, R.E., Weiss, D.W.: Registration of three dimensional MR and PET images of the human brain without markers. Radiology 181, 731–739 (1991)CrossRefPubMedGoogle Scholar
  16. 16.
    Liu, Y., Collins, R.T., Rothfus, W.E.: Robust midsagittal plane extraction from normal and pathological 3D neuroradiology images. IEEE Trans. on Medical Imaging 20, 175–192 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    Talairach, J., Tournoux, P.: Co-Planar Steriotaxic Atlas of the Human Brain. Thieme Medical Publishers (1988)Google Scholar
  18. 18.
    Bergo, F.P.G., Ruppert, G.C.S., Pinto, L.F., Falcão, A.X.: Fast and robust mid-sagittal plane location in 3D MR images of the brain. In: Proc. BIOSIGNALS 2008 – Intl. Conf. on Bio-Inspired Syst. and Sig. Proc., pp. 92–99 (2008)Google Scholar
  19. 19.
    Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E.: Correlation methods for the centering, rotation, and alignment of functional brain images. The Journal of Nuclear Medicine 31, 1220–1226 (1990)PubMedGoogle Scholar
  20. 20.
    Minoshima, S., Berger, K.L., Lee, K.S., Mintun, M.A.: An automated method for rotational correction and centering of three-dimensional functional brain images. The Journal of Nuclear Medicine 33, 1579–1585 (1992)PubMedGoogle Scholar
  21. 21.
    Sun, C., Sherrah, J.: 3D symmetry detection using the extended Gaussian image. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 164–168 (1997)CrossRefGoogle Scholar
  22. 22.
    Smith, S.M., Jenkinson, M.: Accurate robust symmetry estimation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 308–317. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3D brain images. IEEE Trans. on Medical Imaging 21, 122–138 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    Tuzikov, A.V., Colliot, O., Bloch, I.: Evaluation of the symmetry plane in 3D MR brain images. Pattern Recognition Letters 24, 2219–2233 (2003)CrossRefGoogle Scholar
  25. 25.
    Teverovskiy, L., Liu, Y.: Truly 3D midsagittal plane extraction for robust neuroimage registration. In: Proc. of 3rd IEEE Intl. Symp. on Biomedical Imaging, pp. 860–863. IEEE, Los Alamitos (2006)Google Scholar
  26. 26.
    Brummer, M.E.: Hough transform detection of the longitudinal fissure in tomographic head images. IEEE Trans. on Medical Imaging 10, 66–73 (1991)CrossRefGoogle Scholar
  27. 27.
    Guillemaud, R., Marais, P., Zisserman, A., McDonald, B., Crow, T.J., Brady, M.: A three dimensional mid sagittal plane for brain asymmetry measurement. Schizophrenia Research 18, 183–184 (1996)CrossRefGoogle Scholar
  28. 28.
    Hu, Q., Nowinski, W.L.: A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. neuroimage 20, 2153–2165 (2003)CrossRefPubMedGoogle Scholar
  29. 29.
    Volkau, I., Prakash, K.N.B., Ananthasubramaniam, A., Aziz, A., Nowinski, W.L.: Extraction of the midsagittal plane from morphological neuroimages using the Kullback-Leibler’s measure. Medical Image Analysis 10, 863–874 (2006)CrossRefPubMedGoogle Scholar
  30. 30.
    Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V., Rocha, L.M.: Automatic image segmentation by tree pruning. J. Math. Imaging and Vision 29, 141–162 (2007)CrossRefGoogle Scholar
  31. 31.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 19–29 (2004)CrossRefGoogle Scholar
  32. 32.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Systems, Man and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  33. 33.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. on Medical Imaging 17, 463–468 (1998)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Felipe P. G. Bergo
    • 1
  • Alexandre X. Falcão
    • 1
  • Clarissa L. Yasuda
    • 2
  • Guilherme C. S. Ruppert
    • 1
  1. 1.LIV, Institute of ComputingUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Dept. of Neurology, Faculty of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations