An Artificial Chemistry for Networking

  • Thomas Meyer
  • Lidia Yamamoto
  • Christian Tschudin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)

Abstract

Chemical computing models have been proposed since the 1980ies for expressing concurrent computations in elegant ways for shared memory systems. In this paper we look at the distributed case of network protocol execution for which we developed an online artificial chemistry. In this chemistry, data packets become molecules which can interact with each other, yielding computation networks comparable to biological metabolisms. Using this execution support, we show how to compute an average over arbitrary networking topologies and relate it to traditional forms of implementing load balancing. Our long-term interest lies in the robust implementation, operation and evolution of network protocols, for which artificial chemistries provide a promising basis.

Keywords

artificial chemistry network protocols distributed algorithms load balancing Fraglets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of programming, Technical Report RR0566, INRIA (1986)Google Scholar
  2. 2.
    Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoretical Computer Science 96, 217–248 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing. Taylor & Francis, Abington (2001)MATHGoogle Scholar
  5. 5.
    Dittrich, P.: Chemical computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Farmer, J.D., Kauffman, S.A., Packard, N.H.: Autocatalytic replication of polymers. Physica D 2(1-3), 50–67 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)MATHGoogle Scholar
  8. 8.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  9. 9.
    Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Artificial Life 4(2), 203–220 (1998)CrossRefGoogle Scholar
  10. 10.
    Tschudin, C.: Fraglets – A Metabolistic Execution Model for Communication Protocols. In: Proc. 2nd Annual Symposium on Autonomous Intelligent Networks and Systems (AINS), Menlo Park, USA (2003)Google Scholar
  11. 11.
    Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing 7, 279–301 (1989)CrossRefGoogle Scholar
  12. 12.
    Hosseini, S.H., Litow, B., Malkawi, M., McPherson, J., Vairavan, K.: Analysis of a graph coloring based distributed load balancing algorithm. Journal of Parallel and Distributed Computing 10, 160–166 (1990)CrossRefGoogle Scholar
  13. 13.
    Xu, C.Z., Lau, F.C.M.: Analysis of the generalized dimension exchange method for dynamic load balancing. Journal of Parallel and Distributed Computing 16, 385–393 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bahi, J., Couturier, R., Vernier, F.: Synchronous distributed load balancing on dynamic networks. Journal of Parallel and Distributed Computing 65, 1397–1405 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Canright, G., Deutsch, A., Urnes, T.: Chemotaxis-Inspired Load Balancing. In: Proceedings of the European Conference on Complex Systems (2005)Google Scholar
  16. 16.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  17. 17.
    Post, E.: Formal Reductions of the Combinatorial Decision Problem. American Journal of Mathematics 65, 197–215 (1943)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sauro, H.M., Ingalls, B.P.: Conservation analysis in biochemical networks: computational issues for software writers. Biophysical Chemistry 109, 1–15 (2004)CrossRefGoogle Scholar
  19. 19.
    Hofmeyr, J.H.S.: Metabolic control analysis in a nutshell. In: Proceedings of the International Conference on Systems Biology, Pasadena, California, pp. 291–300 (2000)Google Scholar
  20. 20.
    Dittrich, P., di Fenizio, P.S.: Chemical organization theory: towards a theory of constructive dynamical systems. Bulletin of Mathematical Biology 69(4), 1199–1231 (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Meyer
    • 1
  • Lidia Yamamoto
    • 1
  • Christian Tschudin
    • 1
  1. 1.Computer Science DepartmentUniversity of BaselBaselSwitzerland

Personalised recommendations