Bio-Inspired Approaches for Autonomic Pervasive Computing Systems

  • Daniele Miorandi
  • Iacopo Carreras
  • Eitan Altman
  • Lidia Yamamoto
  • Imrich Chlamtac
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)


In this chapter, we present some of the biologically-inspired approaches, developed within the context of the European project BIONETS for enabling autonomic pervasive computing environments. The set of problems addressed include networking as well as service management issues. The approach pursued is based on the use of evolutionary techniques — properly embedded in the system components — as a means to achieve fully autonomic behaviour.


pervasive computing biologically-inspiread design paradigms protocol evolution chemical computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev. 3(3), 3–11 (1999)CrossRefGoogle Scholar
  2. 2.
    Carreras, I., Chlamtac, I., Pellegrini, F.D., Miorandi, D.: BIONETS: Bio-inspired networking for pervasive communication environments. IEEE Trans. Veh. Tech. 56, 218–229 (2007)CrossRefGoogle Scholar
  3. 3.
    Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., Warfield, A.: Plutarch: an argument for network pluralism. In: Proc. of ACM SIGCOMM, Karlsruhe, DE (2003)Google Scholar
  4. 4.
    Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Aut. Adapt. Syst. 1, 223–259 (2006)CrossRefGoogle Scholar
  5. 5.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comp. Mag. 36(1), 41–50 (2003)CrossRefGoogle Scholar
  6. 6.
    Altman, E., Dini, P., Miorandi, D., Schreckling, D.: Paradigms and foundations of BIONETS research,
  7. 7.
    Dittrich, P.: Chemical Computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  9. 9.
    Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)zbMATHGoogle Scholar
  10. 10.
    Dittrich, P., di Fenizio, P.S.: Chemical organization theory: towards a theory of constructive dynamical systems. Bulletin of Mathematical Biology 69(4), 1199–1231 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Banzhaf, W., Lasarczyk, C.: Genetic Programming of an Algorithmic Chemistry. In: O’Reilly, et al. (eds.) Genetic Programming Theory and Practice II, vol. 8, pp. 175–190. Kluwer/Springer (2004)Google Scholar
  12. 12.
    Prodan, L., Tempesti, G., Mange, D., Stauffer, A.: Embryonics: artificial stem cells. In: Proc. of ALife VIII, pp. 101–105 (2002)Google Scholar
  13. 13.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)CrossRefGoogle Scholar
  14. 14.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  15. 15.
    Maynard Smith, J.: Game theory and the evolution of fighting. In: Maynard Smith, J. (ed.) On Evolution, pp. 8–28. Edinburgh University Press (1972)Google Scholar
  16. 16.
    Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hofbauer, J., Sigmund, K.: Evolutionary Games andvPopulation Dynamics. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tembine, H., Altman, E., El-Azouzi, R., Hayel, Y.: Evolutionary games for predicting the evolution and adaptation of wireless protocols submittedGoogle Scholar
  19. 19.
    Tembine, H., Altman, E., El-Azouzi, R.: Delayed evolutionary game dynamics applied to the medium access control. In: Proc. of IEEE BioNetworks, Pisa, IT (2007)Google Scholar
  20. 20.
    Tembine, H., Altman, E., El-Azouzi, R.: Asymmetric delay in evolutionary games. In: Proc. of ValueTools, Nantes, FR (October 2007)Google Scholar
  21. 21.
    Foster, J.A.: Evolutionary computation. Nature 2, 428–436 (2001)Google Scholar
  22. 22.
    Tschudin, C.: Fraglets - a metabolistic execution model for communication protocols. In: Proc. of AINS, Menlo Park, USA (July 2003)Google Scholar
  23. 23.
    Yamamoto, L., Tschudin, C.: Experiments on the Automatic Evolution of Protocols using Genetic Programming. In: Stavrakakis, I., Smirnov, M. (eds.) WAC 2005. LNCS, vol. 3854, pp. 13–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Yamamoto, L.: Code Regulation in Open Ended Evolution. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 271–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Yamamoto, L.: PlasmidPL: A plasmid-inspired language for genetic programming. In: Proc. of EuroGP, Napoli, IT (2008)Google Scholar
  26. 26.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical Report CS-200006, Duke University (April 2000)Google Scholar
  27. 27.
    Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proc. of ACM SIGCOMM, Karlsruhe, Germany, pp. 27–34 (2003)Google Scholar
  28. 28.
    Alouf, S., Carreras, I., Miorandi, D., Neglia, G.: Embedding evolution in epidemic-style forwarding. In: Proc. of IEEE BioNetworks, Pisa, IT (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniele Miorandi
    • 1
  • Iacopo Carreras
    • 1
  • Eitan Altman
    • 2
  • Lidia Yamamoto
    • 3
  • Imrich Chlamtac
    • 1
  1. 1.CREATE-NETPovoItaly
  2. 2.INRIA, 2004 Route des Lucioles - BP 93Sophia AntipolisFrance
  3. 3.Computer Science DepartmentUniversity of BaselBaselSwitzerland

Personalised recommendations