This article considers the coordination language Reo, a Petri net variant called zero-safe nets, and intuitionistic temporal linear logic (ITLL). The first part examines the semantics of the coordination language Reo in relation to zero-safe nets. Although the external presentations of the two models are quite different, the difference in underlying semantics is rather small. In fact, Reo connectors can be compositionally encoded into zero-safe nets. This means that the tools and techniques developed for Petri nets over the last 30 years, such as various extensions to the zero-safe nets model, such reconfigurable and dynamic nets, can be adapted to the Reo setting. The second part re-examines the idea of using linear logic as a basis for coordination languages. Specifically, we argue that intuitionistic temporal linear logic (ITLL) can encode the semantics of Reo and zero-safe nets, by encoding their notion of transaction. Moreover, by adapting the encoding and exploring the additional connectives of ITLL, it can form the basis of an expressive coordination language which goes beyond these models, by introducing means for explicitly reasoning about choices made by the environment and by providing more fine-grained control over the timing of interaction.


Operational Semantic Temporal Linear Logic Linear Logic Coordination Model Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111(1-2), 3–57 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexiev, V.: Applications of linear logic to computation: An overview. Logic Journal of IGPL 2(1), 77–107 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andreoli, J.-M., Freeman, S., Pareschi, R.: The Coordination Language Facility: coordination of distributed objects. Theory and Practice of Object Systems 2(2), 77–94 (1996)CrossRefGoogle Scholar
  4. 4.
    Andreoli, J.-M., Hankin, C., Le Metayer, D. (eds.): Coordination Programming: Mechanisms, Models and Semantics. Imperial College Press (1996)Google Scholar
  5. 5.
    Andreoli, J.-M., Pareschi, R.: Linear objects: logical processes with built-in inheritance. New Generation Computing 9 (1991)Google Scholar
  6. 6.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. in Comp. Science 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Banbara, M., Kang, K.-S., Hirai, T., Tamura, N.: Logic programming in a fragment of intuitionistic temporal linear logic. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 315–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Bellin, G., Scott, P.J.: On the pi-calculus and linear logic. Theoretical Computer Science 135, 11–65 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bestuzheva, I.I., Rudnev, V.V.: Timed Petri nets: Classification and comparative analysis. Automation and Remote Control 51(10), 1308–1318 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Blass, A.: A game semantics for linear logic. Annals of Pure and Applied Logic 56, 151–156 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bruni, R., Melgratti, H.C., Montanari, U.: Extending the zero-safe approach to coloured, reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 291–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Bruni, R., Meseguer, J., Montanari, U.: Tiling transactions in rewriting logic. In: WRLA 2002, Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer Science, vol. 71, pp. 90–109 (April 2004)Google Scholar
  15. 15.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Information and Computation 156(1-2), 46–89 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clarke, D.: Reolite implementation (December 2005),
  17. 17.
    Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundam. Inform. 82(4), 361–390 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context dependency. Science of Computer Programming 66(3), 205–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. In: FOCLASA 2008. ENTCS (July 2008) (to appear)Google Scholar
  20. 20.
    Diakov, N., Arbab, F.: Adaptation of software entities for synchronous exogenous coordination: An initial approach. In: Proceedings of The Second International Workshop on Coordination and Adaptation of Software Entities, W-CAT 2005 (July 2005)Google Scholar
  21. 21.
    Engberg, U.H., Winskel, G.: Linear logic on Petri nets. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 176–229. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  22. 22.
    Cabrera, L.F., et al.: Web Services Atomic Transaction (WS-AtomicTransaction). MSDN Library (November 2004) Google Scholar
  23. 23.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM 35(2), 97–107 (1992)CrossRefGoogle Scholar
  24. 24.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hirai, T.: Propositional temporal linear logic and its application to concurrent systems. EICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (Special Section on Concurrent Systems Technology) E83-A(11), 2219–2227 (2000)Google Scholar
  26. 26.
    Hirai, T.: Temporal Linear Logic and Its Application. PhD thesis, The Graduate School of Science and Technology, Kobe University, Japan (September 2000)Google Scholar
  27. 27.
    Kamide, N.: Linear and affine logics with temporal, spatial and epistemic logics. Theoretical Computer Science 252, 165–207 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kanovich, M.I.: Linear logic as a logic of computations. Annals of Pure and Applied Logic 67(1–3), 183–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kanovich, M.I.: Linear logic automata. Annals of Pure and Applied Logic 78, 147–188 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kanovich, M.I., Ito, T.: Temporal linear logic specifications for concurrent processes (extended abstract). In: Twefth Annual IEEE Symposium on Logic in Computer Science, pp. 48–57 (1997)Google Scholar
  31. 31.
    Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered by dataflow. In: Electronic Communications of the EASST: Graph Transformation and Visual Modeling Techniques, vol. 10 (2008)Google Scholar
  32. 32.
    Küngas, P.: Analysing AI planning problems in linear logic – a partial deduction approach. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 52–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Küngas, P.: Temporal linear logic for symbolic agent negotiation. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS, vol. 3157, pp. 23–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation 88, 105–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mousavi, M.R., Sirjani, M., Arbab, F.: Formal semantics and analysis of component connectors in Reo. Electronic Notes in Computer Science  154(1), 83–99 (2006)CrossRefGoogle Scholar
  36. 36.
    O’Hearn, P.W., Yang, H.: Petri net semantics of bunched implications(October 1999) (unpublished) (available from Peter’s webpage)Google Scholar
  37. 37.
    Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Zelkowitz, M. (ed.) The Engineering of Large Systems. Advances in Computers, vol. 46, pp. 329–400. Academic Press, London (1998)Google Scholar
  38. 38.
    Pham, D.Q., Harland, J., Winikoff, M.: Modelling agent’s choices in temporal linear logic. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS, vol. 4897, pp. 140–157. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent interactions. In: Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) 6th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), IFAAMAS (2007)Google Scholar
  40. 40.
    Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  41. 41.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  42. 42.
    Watkins, K., Cervasato, I., Pfenning, F., Walker, D.: A concurrent logical framework: The propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  43. 43.
    Wegner, P.: Coordination as constrained interaction. In: Ciancarini, P., Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 28–33. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dave Clarke
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations