Equilibria of Graphical Games with Symmetries

(Extended Abstract)
  • Felix Brandt
  • Felix Fischer
  • Markus Holzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5385)


We study graphical games where the payoff function of each player satisfies one of four types of symmetry in the actions of his neighbors. We establish that deciding the existence of a pure Nash equilibrium is NP-hard in general for all four types. Using a characterization of games with pure equilibria in terms of even cycles in the neighborhood graph, as well as a connection to a generalized satisfiability problem, we identify tractable subclasses of the games satisfying the most restrictive type of symmetry. Hardness for a different subclass is obtained via a satisfiability problem that remains NP-hard in the presence of a matching, a result that may be of independent interest. Finally, games with symmetries of two of the four types are shown to possess a symmetric mixed equilibrium which can be computed in polynomial time. We thus obtain a class of games where the pure equilibrium problem is computationally harder than the mixed equilibrium problem, unless P=NP.


Nash Equilibrium Polynomial Time Equilibrium Problem Neighborhood Size Symmetric Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash equilibrium. Journal of Computer and System Sciences (to appear, 2008)Google Scholar
  2. 2.
    Daskalakis, C., Papadimitriou, C.H.: The complexity of games on highly regular graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 71–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Daskalakis, C., Papadimitriou, C.H.: Computing equilibria in anonymous games. In: Proc. of 48th FOCS Symposium, pp. 83–93. IEEE Press, Los Alamitos (2007)Google Scholar
  4. 4.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. In: Proc. of 38th STOC, pp. 71–78. ACM Press, New York (2006)Google Scholar
  5. 5.
    Elkind, E., Goldberg, L.A., Goldberg, P.W.: Equilibria in graphical games on trees revisited. In: Proc. of 7th ACM-EC Conference, pp. 100–109. ACM Press, New York (2006)Google Scholar
  6. 6.
    Elkind, E., Goldberg, L.A., Goldberg, P.W.: Computing good Nash equilibria in graphical games. In: Proc. of 8th ACM-EC Conference, pp. 162–171. ACM Press, New York (2007)Google Scholar
  7. 7.
    Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and choice on the complexity of finding pure Nash equilibria. Information Processing Letters 99(6), 239–245 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equilibrium problems. In: Proc. of 38th STOC, pp. 61–70. ACM Press, New York (2006)Google Scholar
  9. 9.
    Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: Hard and easy games. Journal of Artificial Intelligence Research 24, 195–220 (2005)MathSciNetMATHGoogle Scholar
  10. 10.
    Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Proc. of 17th UAI Conference, pp. 253–260. Morgan Kaufmann, San Francisco (2001)Google Scholar
  11. 11.
    Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. John Wiley & Sons Inc., Chichester (1957)MATHGoogle Scholar
  12. 12.
    Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  14. 14.
    Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player games. In: Proc. of 16th SODA, pp. 82–91. SIAM, Philadelphia (2005)Google Scholar
  15. 15.
    Parikh, R.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)CrossRefMATHGoogle Scholar
  16. 16.
    Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Annals of Mathematics 150, 929–975 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of 10th STOC, pp. 216–226. ACM Press, New York (1978)Google Scholar
  18. 18.
    Schoenebeck, G., Vadhan, S.: The computational complexity of Nash equilibria in concisely represented games. In: Proc. of 7th ACM-EC Conference, pp. 270–279. ACM Press, New York (2006)Google Scholar
  19. 19.
    Seymour, P.D.: On the two-colouring of hypergraphs. The Quarterly Journal of Mathematics 25, 303–312 (1974)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Thomassen, C.: Even cycles in directed graphs. European Journal of Combinatorics 6, 85–89 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Felix Brandt
    • 1
  • Felix Fischer
    • 1
  • Markus Holzer
    • 2
  1. 1.Institut für InformatikUniversität MünchenMünchenGermany
  2. 2.Institut für InformatikTechnische Universität MünchenGarchingGermany

Personalised recommendations