Advertisement

Quantum Query Complexity of Boolean Functions with Small On-Sets

  • Andris Ambainis
  • Kazuo Iwama
  • Masaki Nakanishi
  • Harumichi Nishimura
  • Rudy Raymond
  • Seiichiro Tani
  • Shigeru Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)

Abstract

The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = |{x|f(x) = 1}| or the size of f’s on-set. We prove that: (i) For \(poly(N)\le M\le 2^{N^d}\) for some constant 0 < d < 1, the upper bound of Q(f) is \(O(\sqrt{N\log M / \log N})\). This bound is tight, namely there is a Boolean function f such that \(Q(f) = \Omega(\sqrt{N\log M / \log N})\). (ii) For the same range of M, the (also tight) lower bound of Q(f) is \(\Omega(\sqrt{N})\). (iii) The average value of Q(f) is bounded from above and below by \(Q(f) = O(\log M +\sqrt{N})\) and \(Q(f) = \Omega (\log M/\log N+ \sqrt{N})\), respectively. The first bound gives a simple way of bounding the quantum query complexity of testing some graph properties. In particular, it is proved that the quantum query complexity of planarity testing for a graph with n vertices is Θ(N 3/4) where \(N = \frac{n(n-1)}{2}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambainis, A.: A note on quantum black-box complexity of almost all Boolean functions. Inf. Process. Lett. 71(1), 5–7 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci. 64, 750–767 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. In: Proc. 48th FOCS, pp. 363–372 (2007)Google Scholar
  7. 7.
    Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of Boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ambainis, A., Iwama, K., Kawachi, A., Raymond, R., Yamashita, S.: Improved algorithms for quantum identification of Boolean oracles. Theor. Comput. Sci. 378(1), 41–53 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Anthony, M.: Classification by polynomial surfaces. Discrete Applied Mathematics 61, 91–103 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error quantum algorithms. In: Proc. 40th FOCS, pp. 358–368 (1999)Google Scholar
  12. 12.
    Buhrman, H., Vereschagin, N., de Wolf, R.: On computation and communication with small bias. In: Proc. 22nd CCC, pp. 24–32 (2007)Google Scholar
  13. 13.
    van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proc. 39th FOCS, pp. 362–367 (1998)Google Scholar
  14. 14.
    Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  15. 15.
    O’Donnell, R., Servedio, R.A.: Extremal properties of polynomial threshold functions. In: Proc. 18th CCC, pp. 3–12 (2003)Google Scholar
  16. 16.
    Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. quant-ph/0702144 (2007)Google Scholar
  18. 18.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th STOC, pp. 212–219 (1996)Google Scholar
  19. 19.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Høyer, P., Špalek, R.: Lower bounds on quantum query complexity. Bulletin of the EATCS 87, 78–103 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. 39th STOC, pp. 575–584 (2007)Google Scholar
  22. 22.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proc. ACM-SIAM SODA, pp. 1109–1117 (2005)Google Scholar
  23. 23.
    Montanaro, A., Nishimura, H., Raymond, R.: Unbounded-error quantum query complexity. In: Proc. 19th ISAAC (to appear, 2008)Google Scholar
  24. 24.
    Zhang, S.: On the power of Ambainis lower bounds. Theor. Comput. Sci. 339(2-3), 241–256 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andris Ambainis
    • 1
  • Kazuo Iwama
    • 2
  • Masaki Nakanishi
    • 3
  • Harumichi Nishimura
    • 4
  • Rudy Raymond
    • 5
  • Seiichiro Tani
    • 6
    • 7
  • Shigeru Yamashita
    • 3
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia
  2. 2.School of InformaticsKyoto UniversityKyotoJapan
  3. 3.Graduate School of Information ScienceNAISTNaraJapan
  4. 4.School of ScienceOsaka Prefecture UniversityOsakaJapan
  5. 5.Tokyo Research LaboratoryIBM JapanKanagawaJapan
  6. 6.NTT Communication Science LaboratoriesNTT CorporationKyotoJapan
  7. 7.JST ERATO-SORST QCI ProjectTokyoJapan

Personalised recommendations