From Tree-Width to Clique-Width: Excluding a Unit Interval Graph

  • Vadim V. Lozin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)

Abstract

From the theory of graph minors we know that the class of planar graphs is the only critical class with respect to tree-width. In the present paper, we reveal a critical class with respect to clique-width, a notion generalizing tree-width. This class is known in the literature under different names, such as unit interval, proper interval or indifference graphs, and has important applications in various fields, including molecular biology. We prove that the unit interval graphs constitute a minimal hereditary class of unbounded clique-width. As an application, we show that list coloring is fixed parameter tractable in the class of unit interval graphs.

Keywords

Tree-width Clique-width Unit interval graphs Fixed parameter tractability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)MATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Kloks, T., Niedermeier, R.: Simple MAX-CUT for unit interval graphs and graphs with few P 4s. Electron. Notes Discrete Math. 3, 1–8 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bogart, K.P., West, D.B.: A short proof that proper = unit. Discrete Math. 201, 21–23 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chang, R.-S.: Jump number maximization for proper interval graphs and series-parallel graphs. Inform. Sci. 115, 103–122 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, C., Chang, C.-C., Chang, G.J.: Proper interval graphs and the guard problem. Discrete Math. 170, 223–230 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B., Olariu, S.: Upper bounds to the clique-width of a graph. Discrete Applied Math. 101, 77–114 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Figueiredo, C.M.H., Meidanis, J., de Mello, C.P., Ortiz, C.: Decompositions for the edge colouring of reduced indifference graphs. Theoret. Comput. Sci. 297, 145–155 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.T.: Diameter and treewidth in minor-closed graph families, revisited. Algorithmica 40, 211–215 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173, p. 411. Springer, Berlin (2005)MATHGoogle Scholar
  10. 10.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width Minimization is NP-hard. In: Proceedings of STOC 2006; 38th ACM Symposium on Theory of Computing, pp. 354–362 (2006)Google Scholar
  12. 12.
    Fouquet, J.-L., Giakoumakis, V.: On semi-\(P\sb 4\)-sparse graphs. Discrete Math. 165/166, 277–300 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23, 613–632 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. International J. Foundations of Computer Science 11, 423–443 (2000)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28, 35–44 (1990)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2001)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kloks, T., Kratsch, D., Müller, H.: Bandwidth of chain graphs. Inform. Process. Lett. 68, 313–315 (1998)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Marx, D.: Precoloring extension on unit interval graphs. Discrete Appl. Math. 154, 995–1002 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oum, S.-i.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Roberts, F.: Indifference graphs. Proof Techniques in Graph Theory, 139–146 (1969); (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich. (1968)Google Scholar
  23. 23.
    Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combinatorial Theory Ser. B 41, 92–114 (1986)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory Ser. B 92, 325–357 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vadim V. Lozin
    • 1
  1. 1.DIMAP and Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations