Inducing Polygons of Line Arrangements

  • Ludmila Scharf
  • Marc Scherfenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)


We show that an arrangement \(\mathcal{A}\) of n lines in general position in the plane has an inducing polygon of size O(n). Additionally, we present a simple algorithm for finding an inducing n-path for \(\mathcal {A}\) in O(nlogn) time and an algorithm that constructs an inducing n-gon for a special class of line arrangements within the same time bound.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. Int. J. of Computational Geometry and Applications 13(6), 447–462 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Eu, D., Guevremont, E., Toussaint, G.T.: On envelopes of arrangements of lines. Journal of Algorithms 21(1), 111–148 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Scharf, L.: An inducing simple polygon of a line arrangement. Technical Report B 08-03, Freie Universität Berlin (2008)Google Scholar
  4. 4.
    Bern, M.W., Eppstein, D., Plassman, P.E., Yao, F.F.: Horizon theorems for lines and polygons. In: Discrete and Computational Geometry: Papers from the DIMACS Special Year. DIMACS Ser. Discrete Math. and Theoretical Computer Science, vol. 6, pp. 45–66. AMS (1991)Google Scholar
  5. 5.
    Dangelmayr, C., Felsner, S., Trotter, W.T.: Intersection graphs of pseudosegments: Chordal graphs (2008) arXiv:0809,1980v1 [math.CO]Google Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry: algorithms and applications. Springer, New York (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT 32(2), 249–267 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ludmila Scharf
    • 1
  • Marc Scherfenberg
    • 1
  1. 1.Institute of Computer ScienceFreie Universität BerlinGermany

Personalised recommendations