Advertisement

Constructing the Simplest Possible Phylogenetic Network from Triplets

  • Leo van Iersel
  • Steven Kelk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)

Abstract

A phylogenetic network is a directed acyclic graph that visualises an evolutionary history containing so-called reticulations such as recombinations, hybridisations or lateral gene transfers. Here we consider the construction of a simplest possible phylogenetic network consistent with an input set T, where T contains at least one phylogenetic tree on three leaves (a triplet) for each combination of three taxa. To quantify the complexity of a network we consider both the total number of reticulations and the number of reticulations per biconnected component, called the level of the network. We give polynomial-time algorithms for constructing a level-1 respectively a level-2 network that contains a minimum number of reticulations and is consistent with T (if such a network exists). In addition, we show that if T is precisely equal to the set of triplets consistent with some network, then we can construct such a network, which minimises both the level and the total number of reticulations, in time O(|T| k + 1), if k is a fixed upper bound on the level.

Keywords

Directed Acyclic Graph Lateral Gene Transfer Optimal Network Simple Network Phylogenetic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions. SIAM Journal on Computing 10(3), 405–421 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baroni, M., Grünewald, S., Moulton, V., Semple, C.: Bounding the Number of Hybridisation Events for a Consistent Evolutionary History. Mathematical Biology 51, 171–182 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baroni, M., Semple, C., Steel, M.: A Framework for Representing Reticulate Evolution. Annals of Combinatorics 8, 391–408 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bordewich, M., Semple, C.: Computing the Minimum Number of Hybridization Events for a Consistent Evolutionary History. Discrete Applied Mathematics 155(8), 914–928 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the Maximum Agreement of Phylogenetic Networks. Theoretical Computer Science 335(1), 93–107 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal, Efficient Reconstructing of Phylogenetic Networks with Constrained Recombination. Journal of Bioinformatics and Computational Biology 2(1), 173–213 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    He, Y.-J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring Phylogenetic Relationships Avoiding Forbidden Rooted Triplets. Journal of Bioinformatics and Computational Biology 4(1), 59–74 (2006)CrossRefGoogle Scholar
  8. 8.
    Hein, J.: Reconstructing Evolution of Sequences Subject to Recombination Using Parsimony. Mathematical Biosciences 98, 185–200 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huson, D.H., Bryant, D.: Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution 23(2), 254–267 (2006)CrossRefGoogle Scholar
  10. 10.
    Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.-K.: Constructing a Smallest Refining Galled Phylogenetic Network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 265–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    van Iersel, L.J.J., Keijsper, J.C.M., Kelk, S.M., Stougie, L., Hagen, F., Boekhout, T.: Constructing Level-2 Phylogenetic Networks from Triplets. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    van Iersel, L.J.J., Kelk, S.M., Mnich, M.: Uniqueness, Intractability and Exact Algorithms: Reflections on Level-k Phylogenetic Networks, arXiv:0712.2932v3 [q-bio.PE] (2008)Google Scholar
  13. 13.
    Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. SIAM Journal on Computing 35(5), 1098–1121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. Theoretical Computer Science 363, 60–68 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic Network Reconstruction Approaches. In: Applied Mycology and Biotechnology. International Elsevier Series 6, Bioinformatics, pp. 61–97 (2006)Google Scholar
  16. 16.
    MARLON: Constructing Level One Phylogenetic Networks with a Minimum Amount of Reticulation, http://homepages.cwi.nl/~kelk/marlon.html
  17. 17.
    Morrison, D.A.: Networks in Phylogenetic Analysis: New Tools for Population Biology. International Journal for Parasitology 35(5), 567–582 (2005)CrossRefGoogle Scholar
  18. 18.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic Networks: Modeling, Reconstructibility, and Accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)CrossRefGoogle Scholar
  19. 19.
    Song, Y.S., Hein, J.: On the Minimum Number of Recombination Events in the Evolutionary History of DNA Sequences. Journal of Mathematical Biology 48, 160–186 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leo van Iersel
    • 1
  • Steven Kelk
    • 2
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations