ISAAC 2008: Algorithms and Computation pp 436-447

# Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects

• Karl Bringmann
• Tobias Friedrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)

## Abstract

We consider the computation of the volume of the union of high-dimensional geometric objects. While showing that this problem is #P-hard already for very simple bodies (i.e., axis-parallel boxes), we give a fast FPRAS for all objects where one can: (1) test whether a given point lies inside the object, (2) sample a point uniformly, (3) calculate the volume of the object in polynomial time. All three oracles can be weak, that is, just approximate. This implies that Klee’s measure problem and the hypervolume indicator can be approximated efficiently even though they are #P-hard and hence cannot be solved exactly in time polynomial in the number of dimensions unless P = NP. Our algorithm also allows to approximate efficiently the volume of the union of convex bodies given by weak membership oracles.

For the analogous problem of the intersection of high-dimensional geometric objects we prove #P-hardness for boxes and show that there is no multiplicative polynomial-time -approximation for certain boxes unless NP=BPP, but give a simple additive polynomial-time ε-approximation.

## References

1. 1.
Agarwal, P.K., Kaplan, H., Sharir, M.: Computing the volume of the union of cubes. In: Proc. 23rd annual Symposium on Computational Geometry (SoCG 2007), pp. 294–301 (2007)Google Scholar
2. 2.
Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete & Computational Geometry 2, 319–326 (1986); Announced at STOC 1986
3. 3.
Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects (2008), http://arxiv.org/abs/0809.0835
4. 4.
Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM J. Comput. 32, 700–716 (2003)
5. 5.
Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc. 24th ACM Symposium on Computational Geometry (SoCG 2008), pp. 94–100 (2008)Google Scholar
6. 6.
Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17, 967–974 (1988)
7. 7.
Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. J. ACM 38, 1–17 (1991); Announced at STOC 1989
8. 8.
Fredman, M.L., Weide, B.W.: On the complexity of computing the measure of ∪ [a i, b i]. Commun. ACM 21, 540–544 (1978)
9. 9.
Halman, N., Klabjan, D., Li, C.-L., Orlin, J.B., Simchi-Levi, D.: Fully polynomial time approximation schemes for stochastic dynamic programs. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 700–709 (2008)Google Scholar
10. 10.
Kannan, R., Lovász, L., Simonovits, M.: Random walks and an O *(n 5) volume algorithm for convex bodies. Random Struct. Algorithms 11, 1–50 (1997)
11. 11.
Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Counting colors in boxes. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 785–794 (2007)Google Scholar
12. 12.
Karp, R.M., Luby, M.: Monte-carlo algorithms for the planar multiterminal network reliability problem. J. Complexity 1, 45–64 (1985)
13. 13.
Karp, R.M., Luby, M., Madras, N.: Monte-carlo approximation algorithms for enumeration problems. J. Algorithms 10, 429–448 (1989)
14. 14.
Khachiyan, L.G.: The problem of calculating the volume of a polyhedron is enumerably hard. Russian Mathematical Surveys 44, 199–200 (1989)
15. 15.
Klee, V.: Can the measure of ∪ [a i, b i] be computed in less than O(n logn) steps? American Mathematical Monthly 84, 284–285 (1977)
16. 16.
Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O *(n 4) volume algorithm. J. Comput. Syst. Sci. 72, 392–417 (2006)
17. 17.
Overmars, M.H., Yap, C.-K.: New upper bounds in Klee’s measure problem. SIAM J. Comput. 20, 1034–1045 (1991); Announced at FOCS 1988
18. 18.
Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302 (1996)
19. 19.
Suzuki, S., Ibaraki, T.: An average running time analysis of a backtracking algorithm to calculate the measure of the union of hyperrectangles in d dimensions. In: Proc. 16th Canadian Conference on Computational Geometry (CCCG 2004), pp. 196–199 (2004)Google Scholar
20. 20.
van Leeuwen, J., Wood, D.: The measure problem for rectangular ranges in d-space. J. Algorithms 2, 282–300 (1981)
21. 21.
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3, 257–271 (1999)