Advertisement

Deductive Inference for the Interiors and Exteriors of Horn Theories

  • Kazuhisa Makino
  • Hirotaka Ono
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)

Abstract

In this paper, we investigate the deductive inference for the interiors and exteriors of Horn knowledge bases, where the interiors and exteriors were introduced by Makino and Ibaraki [11] to study stability properties of knowledge bases. We present a linear time algorithm for the deduction for the interiors and show that it is co-NP-complete for the deduction for the exteriors. Under model-based representation, we show that the deduction problem for interiors is NP-complete while the one for exteriors is co-NP-complete. As for Horn envelopes of the exteriors, we show that it is linearly solvable under model-based representation, while it is co-NP-complete under formula-based representation. We also discuss the polynomially solvable cases for all the intractable problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  2. 2.
    Dechter, R., Pearl, J.: Structure identification in relational data. Artificial Intelligence 58, 237–270 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dowling, W., Galliear, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn theories. Journal of Logic Programming 3, 267–284 (1983)Google Scholar
  4. 4.
    Eiter, T., Ibaraki, T., Makino, K.: Computing intersections of Horn theories for reasoning with models. Artificial Intelligence 110, 57–101 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Eiter, T., Makino, K.: On computing all abductive explanations. In: Proc. AAAI 2002, pp. 62–67 (2002)Google Scholar
  6. 6.
    Kavvadias, D., Papadimitriou, C., Sideri, M.: On Horn Envelopes and Hypergraph Transversals. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Kautz, H., Kearns, M., Selman, B.: Reasoning with characteristic models. In: Proc. AAAI 1993, pp. 34–39 (1993)Google Scholar
  8. 8.
    Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artificial Intelligence 74, 129–245 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Khardon, R., Roth, D.: Reasoning with models. Artificial Intelligence 87, 187–213 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khardon, R., Roth, D.: Defaults and relevance in model-based reasoning. Artificial Intelligence 97, 169–193 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Makino, K., Ibaraki, T.: Interior and exterior functions of Boolean functions. Discrete Applied Mathematics 69, 209–231 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Makino, K., Ono, H.: Deductive Inference for the Interiors and Exteriors of Horn Theories, Mathematical Engineering Technical Report, METR 2007-06, The University of Tokyo (February 2007)Google Scholar
  13. 13.
    Makino, K., Ono, H., Ibaraki, T.: Interior and exterior functions of positive Boolean functions. Discrete Applied Mathematics 130, 417–436 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Makowsky, J.: Why Horn formulas matter for computer science: Initial structures and generic examples. Journal of Computer and System Sciences 34, 266–292 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    McKinsey, J.: The decision problem for some classes of sentences without quantifiers. Journal of Symbolic Logic 8, 61–76 (1943)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Selman, B., Kautz, H.: Knowledge compilation using Horn approximations. In: Proc. AAAI 1991, pp. 904–909 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kazuhisa Makino
    • 1
  • Hirotaka Ono
    • 2
  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan
  2. 2.Department of Computer Science and Communication EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations