How to Guard a Graph?

  • Fedor V. Fomin
  • Petr A. Golovach
  • Alexander Hall
  • Matúš Mihalák
  • Elias Vicari
  • Peter Widmayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)


We initiate the study of the algorithmic foundations of games in which a set of cops has to guard a region in a graph (or digraph) against a robber. The robber and the cops are placed on vertices of the graph; they take turns in moving to adjacent vertices (or staying). The goal of the robber is to enter the guarded region at a vertex with no cop on it. The problem is to find the minimum number of cops needed to prevent the robber from entering the guarded region. The problem is highly non-trivial even if the robber’s or the cops’ regions are restricted to very simple graphs. The computational complexity of the problem depends heavily on the chosen restriction. In particular, if the robber’s region is only a path, then the problem can be solved in polynomial time. When the robber moves in a tree, then the decision version of the problem is NP-complete. Furthermore, if the robber is moving in a DAG, the problem becomes PSPACE-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isaacs, R.: Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization. John Wiley & Sons Inc., New York (1965)MATHGoogle Scholar
  2. 2.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43(2-3), 235–239 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Quilliot, A.: Some results about pursuit games on metric spaces obtained through graph theory techniques. European J. Combin. 7(1), 55–66 (1986)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1), 1–11 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. of the ACM 41(5), 960–981 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Nahin, P.J.: Chases and escapes. The mathematics of pursuit and evasion. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  7. 7.
    Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania) 59(1-2), 5–37 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comp. Sci. 399, 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theoret. Comput. Sci. 143(1), 93–112 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fomin, F.V., Golovach, P., Kratochvíl, J.: On tractability of Cops and Robbers game. In: 5th Ifip International Conference On Theoretical Computer Science, vol. 273, pp. 171–185. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefMATHGoogle Scholar
  12. 12.
    Fomin, F.V., Golovach, P.A., Hall, A., Mihalák, M., Vicari, E., Widmayer, P.: How to guard a graph? Technical Report 605, Dep. of Comp. Sc., ETH Zurich (2008),
  13. 13.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, PA (1999)Google Scholar
  14. 14.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences. W. H. Freeman and Co, San Francisco (1979)MATHGoogle Scholar
  16. 16.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. in Appl. Math. 14(4), 389–403 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discrete Math. 306(19-20), 2492–2497 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th STOC, pp. 475–484 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Petr A. Golovach
    • 1
  • Alexander Hall
    • 2
  • Matúš Mihalák
    • 3
  • Elias Vicari
    • 3
  • Peter Widmayer
    • 3
  1. 1.Institute of InformaticsUniversity of BergenNorway
  2. 2.GoogleSwitzerland
  3. 3.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations