A New Algorithm for Finding Trees with Many Leaves

  • Joachim Kneis
  • Alexander Langer
  • Peter Rossmanith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5369)


We present an algorithm that finds trees with at least k leaves in undirected and directed graphs. These problems are known as Maximum Leaf Spanning Tree for undirected graphs, and, respectively, Directed Maximum Leaf Out-Tree and Directed Maximum Leaf Spanning Out-Tree in the case of directed graphs. The run time of our algorithm is \(O({\it poly}(|V|) + 4^k k^2)\) on undirected graphs, and O(4 k |V| ·|E|) on directed graphs. This improves over the previously fastest algorithms for these problems with run times of \(O({\it poly}(|V|) + 6.75^k {\it poly}(k))\) and \(2^{O(k \log k)} {\it poly}(|V|)\), respectively.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Better algorithms and bounds for directed maximum leaf problems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 316–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized algorithms for directed maximum leaf problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of Twente, the Netherlands (2006)Google Scholar
  5. 5.
    Bonsma, P.S., Brüggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bonsma, P.S., Dorn, F.: An FPT algorithm for directed spanning k-leaf (2007), http://arxiv.org/abs/0711.4052
  7. 7.
    Bonsma, P.S., Dorn, F.: Tight Bounds and Faster Algorithms for Directed Max-Leaf Problems. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 222–233. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Bonsma, P.S., Zickfeld, F.: A 3/2-Approximation Algorithm for Finding Spanning Trees with Many Leaves in Cubic Graphs. In: Proc. of the 34th WG. LNCS. Springer, Heidelberg (to appear, 2008)Google Scholar
  9. 9.
    Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)CrossRefGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  12. 12.
    Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. of the 1st ACiD, pp. 1–41 (2005)Google Scholar
  13. 13.
    Fellows, M.R., Langston, M.A.: On well-partial-ordering theory and its applications to combinatorial problems in VLSI design. SIAM J. Discrete Math. 5, 117–126 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gutin, G., Razgon, I., Kim, E.J.: Minimum Leaf Out-Branching Problems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 235–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discret. Math. 4(1), 99–106 (1991)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of 3rd MOBIHOC, pp. 112–122. ACM, New York (2002)Google Scholar
  19. 19.
    Linial, N., Sturtevant, D.: Unpublished result (1987)Google Scholar
  20. 20.
    Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating and absorbent set in a wireless ad-hoc network with different transmission ranges. In: Proc. of the 8th MOBIHOC, pp. 22–31. ACM, New York (2007)Google Scholar
  22. 22.
    Robertson, N., Seymour, P.D.: Graph minors—a survey. In: Anderson, I. (ed.) Surveys in Combinatorics, pp. 153–171. Cambridge University Press, Cambridge (1985)Google Scholar
  23. 23.
    Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)Google Scholar
  24. 24.
    Thai, M., Wang, F., Liu, D., Zhu, S., Du, D.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joachim Kneis
    • 1
  • Alexander Langer
    • 1
  • Peter Rossmanith
    • 1
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany

Personalised recommendations