Advertisement

Relict Species pp 119-143 | Cite as

Relict Populations and Endemic Clades in Palearctic Reptiles: Evolutionary History and Implications for Conservation

  • Ulrich Joger
  • Uwe Fritz
  • Daniela Guicking
  • Svetlana Kalyabina-Hauf
  • Zoltan T. Nagy
  • Michael Wink
Conference paper

Abstract

The phylogeographic history of eight species complexes of West Palearctic reptiles was reconstructed using mitochondrial and nuclear markers. Cryptic endemic taxa were detected in the Southern European peninsulas (Iberia, Southern Italy/Sicily, and Greece) as well as in North Africa, Anatolia, Iran, and the Caucasus. These endemics are mainly of Tertiary or early Pleistocene age. Only part of them can be categorized as relicts of a former, more widely distributed taxon, having survived in ice age refugia; others have probably always remained in a restricted area, close to their origin.

Typical Pleistocene relict populations are phylogenetically related to larger conspecific populations elsewhere. They may be restricted to mountain habitats like Vipera berus in the Alps and in Greek mountains, or to islands like Lacerta bilineata on Cres and Natrix tessellata in Crete.

Holocene relict populations stem from a postPleistocene range expansion (usually in Southeast-Northwest direction). They reached their largest distribution during the Holocene climatic optimum and were later restricted to small areas in the climatically most favorable regions. Examples are N. tessellata, Zamenis longissimus, L. bilineata, L. viridis, and Emys orbicularis in Germany. These populations are only poorly differentiated genetically; hence the risk of losing genetic diversity is not an appropriate argument for their protection. They may react to global warming by a range expansion.

Southern European, North African, and Middle Eastern relicts may, on the contrary, be threatened by global warming. These populations are in need of more studies, and should be brought to the attention of national and international conservation agencies.

Keywords

Northern Territory Glacial Refuge Haplotype Group Carpathian Basin Relict Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We like to thank many colleagues - too numerous to mention individually - who provided tissues from different parts of Europe and non-European parts of distribution ranges. Robin Lawson helped with sequencing Natrix spp, Nik Stümpel and Alexander Zinenko sequenced additional Vipera samples and Toni Amann did initial work on the Lacerta viridis complex. Our work was financed with grants provided by the Deutsche Forschungsgemeinschaft (DFG Jo-134/7, Jo-134/9 and Wi-319/18).

References

  1. Amann T, Razzetti E, Joger U (2001) La zona di contatto tra Lacerta bilineata (Daudin, 1802) e Lacerta viridis (Laurenti, 1768) in Italia. Atti della 3o Congresso Nazionale, Societas Herpetologica Italica. Pianura (science e storia dell’ambiente padano) 13:261–264Google Scholar
  2. Amann T, Rykena S, Joger U, Nettmann HK, Veith M (1997) Zur artlichen Trennung von Lacerta bilineata Daudin, 1802, und L. viridis (Laurenti, 1768). Salamandra 33:255–268Google Scholar
  3. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  4. Babik W, Branicki W, Sandera M et al (2004) Mitochondrial phylogeography of the moor frog, Rana arvalis. Mol Ecol 13:1469–1480CrossRefPubMedGoogle Scholar
  5. Barata M, Harris DJ, Castilho R (2008) Comparative phylogeography of Northwest African Natrix maura (Serpentes: Colubridae) inferred from mtDNA sequences. Afr Zool 43:1–7CrossRefGoogle Scholar
  6. Barton NH, Hewitt GM (1988) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  7. Bischoff W (1988) Zur Verbreitung und Systematik der Zauneidechse, Lacerta agilis Linnaeus 1758. Mertensiella 1:11–30Google Scholar
  8. Böhme W, Joger U (1984) Eine neue Art des Vipera berus - Komplexes ausder Türkei. Amphibia-Reptilia 4:265–271Google Scholar
  9. Böhme MU, Fritz U, Kotenko T, Dzukic G, Ljubisavljevic K, Tzankov N, Berendonk TU (2006) Phylogeography and cryptic variation within the Lacerta viridis complex (Lacertidae, Reptilia). Zool Scr 36:119–131CrossRefGoogle Scholar
  10. Brückner M, Klein B, Düring A, Mentel T, Rabus S, Soller JT (2001) Phylogeographic analysis of the Lacerta viridis/bilineata complex: molecular patterns and distribution. Mertensiella 13:45–51Google Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Fritz U (1996) Zur innerartlichen Variabilität von Emys orbicularis (Linnaeus, 1758). 5. Innerartliche Hierarchie und Zoogeographie. Zool Abh Staatl Museum Tierkunde Dresden 49:31–71Google Scholar
  13. Fritz U, Guicking D, Lenk P, Joger U, Wink M (2004) When turtle distribution tells European history: mtDNA haplotypes of Emys orbicularis reflect in Germany former division by the Iron Curtain. Biologia 59(Suppl.14):19–25Google Scholar
  14. Fritz U, Fattizzo T, Guicking D, Tripepi S, Pennisi MG, Lenk P, Joger U, Wink M (2005) A new cryptic species of pond turtle from South Italy, the hottest spot in the range of the genus Emys (Reptilia: Testudines: Emydidae). Zool Scr 34:1–21CrossRefGoogle Scholar
  15. Fritz U, Guicking D, Kami H, Arakelyan M, Auer M, Ayaz D, Ayrez Fernandez C, Bakiev A, Celani A, Dzukic G, Fahd S, Havas P, Joger U, Khabibullin VN, Mazanaeva LF, Siroky P, Tripepi S, Velez AV, Velo Antón G, Wink M (2007) Mitochondrial phylogeography of European pond turtles (Emys orbicularis, Emys trinacris) - an update. Amphib Reptil 28:418–426CrossRefGoogle Scholar
  16. Gliemeroth AK (1995) Paläoökologische Untersuchungen über die letzten 22.000 Jahre in Europa. Paläoklimaforschung 18. Gustav Fischer, StuttgartGoogle Scholar
  17. Godinho R, Crespo EG, Ferrand N, Harris DJ (2005) Phylogeny and evolution of the green lizards, Lacerta spp. (Squamata: Lacertidae) based on mitochondrial and nuclear DNA sequences. Amphib Reptil 26:271–285CrossRefGoogle Scholar
  18. Guicking D, Joger U, Wink M (2009) Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR finger printing. Org Divers Evol 9:201–214Google Scholar
  19. Guicking D, Lawson R, Joger U, Wink M (2006a) Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biol J Linn Soc 87:127–143CrossRefGoogle Scholar
  20. Guicking D, Griffiths RA, Moore RD, Joger U, Wink M (2006b) Introduced alien or persecuted native? Resolving the origin of the viperine snake (Natrix maura) on the island of Mallorca. Biodivers Conserv 15:3045–3054CrossRefGoogle Scholar
  21. Guicking D, Joger U, Wink M (2008) Mitochondrial and nuclear phylogeography of the viperine snake (Natrix maura): evidence for strong intraspecific differentiation. Org Divers Evol 8:130–145CrossRefGoogle Scholar
  22. Guillaume CO, Heulin B, Attayago MJ, Bea A, Brana F (2000) Refuge areas and suture zones in the Pyrenean and Cantabrian regions: geographic variation of the female MPI sex-linked alleles among oviparous populations of the lizard Lacerta (Zootoca) vivipara. Ecography 23:3–10CrossRefGoogle Scholar
  23. Habel JC, Schmitt T, Müller P (2005) The fourth paradigma of postglacial range expansion of European terrestrial species: The phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497CrossRefGoogle Scholar
  24. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 58:247–276Google Scholar
  25. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  26. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 Applications NoteCrossRefPubMedGoogle Scholar
  27. Ivanov M (1997) Vývoj kenozické hadí fauny evropy. (The evolution of European Cenozoic snake fauna). In: Hladilová S (ed) Dynamics of interaction between marine and continental environments. Masaryk University, Brno, pp 59–91Google Scholar
  28. Ivanov M (2001) Changes in the composition of the European snake fauna during the early miocene and at the Early/Middle Miocene transition. Paläontologische Z 74:563–573Google Scholar
  29. Jaarola M, Searle JB (2002) Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol Ecol 11:2613–2621CrossRefPubMedGoogle Scholar
  30. Joger U, Lenk P (1997) Entnahme und Behandlung von Blutproben bei Amphibien und Reptilien im Freiland. Mertensiella 7:329–340Google Scholar
  31. Joger U, Steinfartz S (1994) Electrophoretic investigations in the evolutionary history of the West Mediterranean Salamandra. Mertensiella 4:241–254Google Scholar
  32. Joger U, Amann T, Lenk P, Willand U (1998) Molekulare Merkmale und das phylogenetische Artkonzept. Zool Abh Staatl Museum Tierkunde Dresden 50(Suppl.) 100 Jahre Artkonzepte in der Zoologie:109–123Google Scholar
  33. Joger U, Amann T, Veith M (2001) Phylogeographie und genetische Differenzierung im Lacerta viridis-bilineata-Komplex. Mertensiella 13:60–68Google Scholar
  34. Joger U, Guicking D, Kalyabina-Hauf S, Lenk P, Nagy ZT, Wink M (2006) Phylogeographie, artbildung und postpleistozäne einwanderung mitteleuropäischer reptilien. Z Feldherpetol 10(Suppl.):29–59Google Scholar
  35. Joger U, Fritz U, Guicking D, Kalyabina-Hauf S, Lenk P, Nagy ZT, Wink M (2007) Phylogeography of Western palaractic reptiles - Spatial and temporal speciation patterns. Zool Anz 246:293–313CrossRefGoogle Scholar
  36. Kalyabina SA, Milto KD, Ananjeva NB, Legal L, Joger U, Wink M (2001) Phylogeography and systematics of Lacerta agilis based on mitochondrial cytochrome b gene sequences: first results. Russ J Herpetol 8:149–159Google Scholar
  37. Kalyabina-Hauf SA, Milto KD, Ananjeva NB, Joger U, Kotenko TI, Wink M (2004a) Reevaluation of the status of Lacerta agilis tauridica Suchov, 1926. Russ J Herpetol 11:65–72Google Scholar
  38. Kalyabina-Hauf S, Schweiger S, Joger U, Mayer W, Wink M (2004b) Phylogeny and systematics of adders (Vipera berus complex). In: Joger U, Wollesen R (eds) Verbreitung, Ökologie und Schutz der Kreuzotter (Vipera berus [Linnaeus, 1758]). Mertensiella 15. Rheinbach, pp. 7–16Google Scholar
  39. Lenk P, Joger U (1994) Genetic relationships between populations and intraspecific subdivision of Elaphe longissima (Laurenti, 1768). Amphib Reptil 15:363–373CrossRefGoogle Scholar
  40. Lenk P, Wüster W (1991) A multivariate approach to the systematics of Italian ratsnakes of the Elaphe longissima complex (Reptilia: Colubridae): Revalidation of Camerano’s Callopeltis longissimus var. lineata. Herpetol J 9:153–162Google Scholar
  41. Lenk P, Joger U, Fritz U, Heidrich P, Wink M (1999) Phylogeographic patterns in the mitochondrial cytochrome b gene of the European pond turtle, Emys orbicularis (Linnaeus). Mol Ecol 8:1911–1912CrossRefPubMedGoogle Scholar
  42. Lenk P, Joger U, Wink (2001) Phylogenetic relationstips among European ratsnakes of the genus Elaphe Fitzinger based on mitochondrial DNA sequence comparisons. Amphibia-Reptilia 22:329–339Google Scholar
  43. Lopez-Fuster MJ, Ventura J (1996) A morphometrical review of the Sorex araneus-arcticus species group from the Iberian Peninsula (Insectivora, Soricidae). Bonn Zool Beitr 46:327–337Google Scholar
  44. Mayer W, Beyerlein P (2001) Genetische Differenzierung von Lacerta viridis/bilineata und L. trilineata in Griechenland. Mertensiella 13:52–59Google Scholar
  45. Nagy ZT, Joger U, Guicking D, Amann T, Wink M (2002) Phylogeography of the European whip snake, Coluber (Hierophis) viridiflavus Lacépède, 1789, inferred from nucleotide sequences of the mitochondrial cytochrome b gene and ISSR genomic fingerprinting. Biota (Race) 3:109–118Google Scholar
  46. Nagy ZT, Joger U, Wink M, Glaw F, Vences M (2003) Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies. Proc R Soc Lond B 270:2613–2621CrossRefGoogle Scholar
  47. Nagy ZT, Lawson R, Joger U, Wink M (2004) Molecular systematics of racers, whipsnakes and relatives (Reptilia: Colubridae) using mitochondrial and nuclear markers. J Zool Syst Evol Res 42:223–233CrossRefGoogle Scholar
  48. Nettmann HK (2001) Die Smaragdeidechsen (Lacerta s. str.) - Eine Übersicht über Verwandtschaft und Formenvielfalt. Mertensiella 13:11–32Google Scholar
  49. Peters G (1977) Die Reptilien aus den fossilen Tierbautensystemen von Pisede bei Malchim. Wiss Z Humboldt-Univ Berlin, Mathem-Naturwiss Reihe 26:307–327Google Scholar
  50. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  51. Rykena S (1991) Kreuzungsexperimente zur Prüfung der Artgrenzen im Genus Lacerta sensu stricto. Mitt Zool Mus Berlin 67:55–68CrossRefGoogle Scholar
  52. Rykena S (1996) Experimental interspecific hybridization in the genus Lacerta. Isr J Zool 42:171–184Google Scholar
  53. Rykena S (2001) Experimental hybridization in Green Lizards (Lacerta s. str.), a tool to study species boundaries. Mertensiella 13:78–88Google Scholar
  54. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  55. Scali S, Gentilli A (1999) Morphometric analysis and sexual dimorphism of extinct adders (Vipera berus) of the Po plane (Northern Italy). In: Miaud C, Guyetant R (eds) Current studies in herpetology. Proceedings of the 9th Ordinary General Meeting of the SEH. Le Bourget du Lac, pp. 391–396Google Scholar
  56. Schätti B, Vanni S (1986) Intraspecific variation in Coluber viridiflavus Lacepède, 1789, and validity of its subspecies (Reptilia, Serpentes, Colubridae). Rev Suisse Zool 93:219–232Google Scholar
  57. Stümpel N, Brito JC, Saint Girons H (2005) Vipera (Vipera) latastei Boscá, 1878 - Stülpnasenotter. In: Joger U, Stümpel N (eds) Handbuch der Amphibien und Reptilien Europas, 3/IIB. Aula, Wiesbaden, pp 187–212Google Scholar
  58. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, MAGoogle Scholar
  59. Szyndlar Z, Böhme W (1993) Die fossilen schlangen deutschlands: geschichte der faunen und ihrer erfoschung. Mertensiella 3:381–431Google Scholar
  60. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  61. Ursenbacher S, Carlsson M, Helfer V, Tegelström H, Fumagalli L (2006a) Phylogeography and pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol Ecol 15:4325–3437CrossRefGoogle Scholar
  62. Ursenbacher S, Conelli A, Golay P, Monney J-C, Zuffi MAL, Thiery G, Durand T, Fumagalli L (2006b) Phylogeography of the asp viper (Vipera aspis) inferred from mitochondrial DNA sequence data: evidence for multiple Mediterranean refugial areas. Mol Phyl Evol 38:546–552CrossRefGoogle Scholar
  63. Vedmederja VI, Grubant VN, Rudaeva AV (1986) K voprosu o nazvanii chiornoy gadyuki lesostepi evropeiskoy chasti SSR. Vestnik Kharkovskogo Universiteta 288:83–85Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ulrich Joger
    • 1
  • Uwe Fritz
    • 2
  • Daniela Guicking
    • 3
  • Svetlana Kalyabina-Hauf
    • 4
  • Zoltan T. Nagy
    • 5
  • Michael Wink
    • 4
  1. 1.Staatliches Naturhistorisches MuseumBraunschweigGermany
  2. 2.Museum für TierkundeNatural History State CollectionDresdenGermany
  3. 3.Universität Kassel, FB1, Systematik und Morphologie der PflanzenKasselGermany
  4. 4.Institut für Pharmazie und molekulare BiotechnologieUniversität HeidelbergHeidelbergGermany
  5. 5.Royal Belgian Institute of Natural Sciences, JEMUBrusselsBelgium

Personalised recommendations