Relict Species pp 105-117 | Cite as

Relicts Within the Genus Complex Astragalus/Oxytropis (Fabaceae), and the Comparison of Diversity by Objective Means

  • Matthias SchleeEmail author
  • Markus Göker
  • Guido W. Grimm
  • Vera Hemleben
Conference paper


Astragalus and Oxytropis represent one of the largest angiosperm genus complexes. It is widely discussed why - and if at all - it contains so many species. Here, we discuss how the genetic divergence in a postglacial relict species, Oxytropis pilosa, can provide insights into the relative genetic variance of taxa. Methods are introduced to obtain sequence clusters of similar genetic diversity and to detect statistically significant differences. These approaches provide objective means to identify taxa that deserve the same protection efforts, independent of a fixed species concept. O. pilosa ITS sequences display an inter- and intra individual variance, comparable to clusters comprising numerous accepted species. Regarding genetic diversity, some O. pilosa populations represent relicts that deserve the same or a higher protection status than some species of Astragalus. We discuss the need of objectivity in identifying the evolutionary hot spots as well as the measures to define and protect them.


Conservation Effort Internal Transcribe Space Sequence Corrected Entropy Astragalus Species Relict Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks go to Angela Dressel and Karin Stögerer for technical assistance, and to Wilhelm Sauer for discussion. Reiner Schmahl, Eberhard Koch, Natalie Schmalz and Matthias Kropf, Ludmilla Barjaewa, Ludmilla Mantschenkowa, and Erich Kalmbach, Friedrich Schlee, Evgenia Zeidler-Schewzowa, and the University of Barnaul (Altai, Siberia) are kindly acknowledged for contributing plant material, GZU, LY, M, and MA for sending specimens for revision. Hospitality of the visited herbaria BC, BOLO, C, DR, E, FB, FI, FR, G, HBG, K, LE, LI, LJU, M, MPU (incl. SIGMA), P, RO, S, STU, TUB, UPS, W, WU, and Z was enjoyed with great pleasure. The project was supported by a grant of the “Landesgraduiertenförderung Baden-Württemberg”; grants for travelling were obtained from “Reinhold-und-Maria-Teufel-Stiftung” and the German Academic Exchange Service (DAAD).


  1. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77(12):7323–7327CrossRefPubMedGoogle Scholar
  2. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence of angiosperm phylogeny. Ann Mo Bot Gard 82(2):247–277CrossRefGoogle Scholar
  3. Barneby RC (1964) Atlas of North American Astragalus. Mem NY Bot Gard 13(1–2):1–1188Google Scholar
  4. Candolle AP de (1802) [Astragalogia] Augustini-Pyrami Decandolle, Astragalogia nempe Astragali, Biserrulae et Oxytropidis, nec non Phacae, Colutae et Lessertiae, Historia Iconibus Illustrata. Joann. Bapt. Garnery, ParisiisGoogle Scholar
  5. Chater AO (1968) Astragalus. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora europaea, vol 2, 1st edn, Rosaceae to Umbelliferae. Cambridge University Press, Cambridge, pp 108–124Google Scholar
  6. Denk T, Grimm GW (2005) Phylogeny and biogeography of Zelkova (Ulmaceae s.str.) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147(2):129–157CrossRefGoogle Scholar
  7. Dong TTX, Ma XQ, Clarke C, Song ZH, Ji ZN, Lo CK, Tsim KWK (2003) Phylogeny of Astragalus in China: molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA. J Agric Food Chem 51(23):6709–6714CrossRefPubMedGoogle Scholar
  8. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MAGoogle Scholar
  9. Gillett JB (1964) Astragalus L. (Leguminosae) in the highlands of Tropical Africa. Kew Bull 17(3):413–423CrossRefGoogle Scholar
  10. Göker M, Grimm GW (2008) General functions to transform associate data to host data, and their use in phylogenetic inference from sequences with intra-individual variability. BMC Evol Biol 8:86CrossRefPubMedGoogle Scholar
  11. Grimm GW, Denk T, Hemleben V (2007) Evolutionary history and systematics of Acer section Acer - a case study of low-level phylogenetics. Plant Syst Evol 267(1–4):215–253CrossRefGoogle Scholar
  12. Hegi G (1924) Flora von Mitteleuropa. IV. Band, 3. Teil: Dicotyledones 2. Teil Leguminosae - Tropaeolaceae, 1st edn. Carl Hanser, MünchenGoogle Scholar
  13. Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) Architecture of eukaryotic genes. VCH, Weinheim, pp 371–383Google Scholar
  14. Jorgensen JL, Stehlik I, Brochmann C, Conti E (2003) Implications of ITS sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complexes in Alaska. Am J Bot 90(10):1470–1480CrossRefGoogle Scholar
  15. Karron JD, Linhart YB, Chaulk CA, Robertson CA (1988) Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am J Bot 75(8):1114–1119CrossRefGoogle Scholar
  16. Kazempour Osaloo S, Maassoumi AA, Murakami N (2003) Molecular systematics of the genus Astragalus L. (Fabaceae): Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Plant Syst Evol 242(1–4):1–32CrossRefGoogle Scholar
  17. Kulshreshtha S, Creamer R, Sterling TM (2004) Phylogenetic relationships among New Mexico Astragalus mollissimus varieties and Oxytropis species by restriction fragment analysis. Weed Sci 52(6):984–988CrossRefGoogle Scholar
  18. Lee C, Grasso C, Sharlow M (2002) Multiple sequence alignment using partial order graphs. Bioinformatics 18(3):452–464CrossRefPubMedGoogle Scholar
  19. Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, AmsterdamGoogle Scholar
  20. Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Band 1, Teil 1: Text; Band 1, Teil 2: Karten. Gustav Fischer, JenaGoogle Scholar
  21. Podlech D (1986) Taxonomic and phytogeographical problems in Astragalus of the Old World and South-West Asia. Proc R Soc Edinb B 89:37–43Google Scholar
  22. Potthast T (2000) Funktionssicherung und/oder Aufbruch ins Ungewisse? Anmerkungen zum Prozeßschutz. In: Jax K (ed) Funktionsbegriff und Unsicherheit in der Ökologie. Beiträge zu einer Tagung des Arbeitskreises “Theorie” in der Gesellschaft für Ökologie vom 10. bis 12. März 1999 im Heinrich-Fabri-Institut der Universität Tübingen in Blaubeuren (= Theorie in der Ökologie; 2). Peter Lang, Frankfurta a.M, pp 65–81Google Scholar
  23. Ralphs MH, Provenza FD (1999) Conditioned food aversions: principles and practices, with special reference to social facilitation. Proc Nutr Soc 58(4):813–820CrossRefPubMedGoogle Scholar
  24. R Development Core Team (2005) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  25. Sanderson MJ (1991) Phylogenetic relationships within North American Astragalus L. (Fabaceae). Syst Bot 16(3):414–430CrossRefGoogle Scholar
  26. Sanderson MJ, Doyle JJ (1993) Phylogenetic relationships in North American Astragalus (Fabaceae) based on chloroplast DNA restriction site variation. Syst Bot 18(3):395–408CrossRefGoogle Scholar
  27. Sanderson MJ, Wojciechowski MF (1996) Diversification rates in a temperate legume clade: are there “so many species” of Astragalus (Fabaceae)? Am J Bot 83(11):1488–1502CrossRefGoogle Scholar
  28. Sauer W, Gebert S, Shu-Kun C, Li H (1990) Beitrag zur Kenntnis chinesischer Pedicularis-Arten (Scrophulariaceae). Razprave IV. razreda SAZU [Razprave / Slovenska Akademija Znanosti in Umetnosti, Razred za Naravoslovne Vede = Dissertationes / Academia Scientiarum et Artium Slovenica, Classis 4]. Ljubljana 31(19):291–316Google Scholar
  29. Schlee M (2004) Probleme der Erhaltung biologischer Vielfalt in der Kulturlandschaft - Ökologische Schäden durch verfehlte Pflegekonzepte. In: Potthast T (ed) Ökologische Schäden - begriffliche, methodologische und ethische Aspekte (= Theorie in der Ökologie; 10). Peter Lang, Frankfurt a.M, pp 95–120Google Scholar
  30. Schlee M, Sauer W, Hemleben V (2003) Molekulare und pflanzensoziologische Analyse von pontisch-pannonischen Reliktarten aus wärmebegünstigten Saum-Gesellschaften Süddeutschlands und benachbarter Gebiete. Nova Acta Leopold NF 87(328):379–387Google Scholar
  31. Shannon C (1948) A mathematical theory of information. Bell System Tech J 27:379–423Google Scholar
  32. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38(Pt 2, No 22):1409–1438Google Scholar
  33. Soltis PS, Gitzendanner MA (1999) Molecular systematics and the conservation of rare species [Review]. Conserv Biol 13(3):471–483CrossRefGoogle Scholar
  34. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688CrossRefPubMedGoogle Scholar
  35. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57(5):758–771CrossRefPubMedGoogle Scholar
  36. Stock M, Eskildsen K, Gätje C, Kellermann A (1999) Evaluation procedure for nature conservation in a national park - a proposal for the protection of ecological processes. Z Ökologie Naturschutz 8(1):81–95Google Scholar
  37. Swofford DL, Olsen GJ, Waddell PJ, Hillis DL (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, MA, pp 407–514Google Scholar
  38. Tin MMY, Cho C-H, Chan K, James AE, Ko JKS (2007) Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis 28(6):1347–1355CrossRefPubMedGoogle Scholar
  39. Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5(6):735–745CrossRefPubMedGoogle Scholar
  40. Volkov R, Komarova N, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodiver 5(3):261–276CrossRefGoogle Scholar
  41. Watt AS (1947) Pattern and process in the plant community. J Ecol 35(1/2):1–22CrossRefGoogle Scholar
  42. Williams MC, Barneby RC (1977) The occurrence of nitro-toxins in North American Astragalus (Fabaceae). Brittonia 29(3):310–326CrossRefGoogle Scholar
  43. Wirth M, Estabrook GF, Rogers DJ (1966) A graph theory model for systematic biology, with an example for the Oncidiinae (Orchidaceae). Syst Zool 15(1):59–69CrossRefGoogle Scholar
  44. Wojciechowski MF, Sanderson MJ, Baldwin BG, Donoghue MJ (1993) Monophyly of aneuploid Astragalus (Fabaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot 80(6):711–722CrossRefGoogle Scholar
  45. Wojciechowski MF, Sanderson MJ, Hu JM (1999) Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst Bot 24(3):409–437CrossRefGoogle Scholar
  46. Yip PY, Kwan HS (2006) Molecular identification of Astragalus membranaceus at the species and locality levels. J Ethnopharmacol 106(2):222–229CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthias Schlee
    • 1
    Email author
  • Markus Göker
    • 2
  • Guido W. Grimm
    • 3
  • Vera Hemleben
    • 1
  1. 1.Center for Plant Molecular Biology (ZMBP) – General GeneticsUniversity of TübingenTübingenGermany
  2. 2.DSMZ – German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  3. 3.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations