Relict Species pp 239-252 | Cite as

Are Disjunct Alpine and Arctic-Alpine Animal and Plant Species in the Western Palearctic Really “Relics of a Cold Past”?

  • Thomas SchmittEmail author
  • Christoph Muster
  • Peter Schönswetter
Conference paper


The climatic fluctuations during the Pleistocene as well as the Holocene warming caused numerous disjunctions of cold-adapted, arctic-alpine, and alpine biota. However, the depths of the genetic splits among the disjunct parts of the species distributions vary considerably. The arctic ranges are usually weakly differentiated, and great similarity with at least some areas in more Southern regions is frequently found. Likewise, major mountain ranges in geographic proximity often share genetically similar populations. However, the genetic constitution of populations from more remote (predominantly Southern) mountain systems is strongly different from all other populations. This suggests recent vicariance events in the two former groups, but long-lasting isolation in the latter group, which apparently is mostly composed of relics of a more distant cold past.


Amplify Fragment Length Polymorphism Genetic Lineage Balkan Peninsula Mountain System Wolf Spider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol Ecol 12:299–313CrossRefPubMedGoogle Scholar
  2. Albach DC, Schönswetter P, Tribsch A (2006) Comparative phylogeography of closely related species of the Veronica alpina complex in Europe and North America. Mol Ecol 15:3269–3286CrossRefPubMedGoogle Scholar
  3. Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Bilton DT (1994) Phylogeography and recent historical biogeography of Hydroporus glabriusculus Aubé (Coleoptera: Dytiscidae) in the British Isles and Scandinavia. Biol J Linn Soc 51:293–307Google Scholar
  5. Brändle M, Heuser R, Marten A, Brandl R (2007) Population structure of the freshwater flatworm Crenobia alpina (Dana): old lineages and low gene flow. J Biogeogr 34:1183–1192CrossRefGoogle Scholar
  6. Cupedo F (2007) Geographical variation and Pleistocene history of the Erebia pandrose - sthennyo complex (Nymphalidae; Satyrinae). Nota lepid 30:329–353Google Scholar
  7. de Lattin G (1967) Grundriss der Zoogeographie. Fischer, StuttgartGoogle Scholar
  8. Dixon C, Schönswetter P, Schneeweiss GM (2007) Traces of ancient range shifts in a mountain plant group (Androsace halleri complex, Primulaceae). Mol Ecol 16:3890–3901CrossRefPubMedGoogle Scholar
  9. Ehrich D, Gaudeul M, Assefa A, Koch M, Mummenhoff K, Nemomissa S, IntraBioDiv Consortium, Brochmann C (2007) Genetic consequences of pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 6:2542–2559CrossRefGoogle Scholar
  10. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  11. Excoffier LP, Smouse E, Quattro JM (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  12. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  13. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  14. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  15. Hewitt GM (2001) Speciation, hybrid zones and phylogeography - or seeing genes in space and time. Mol Ecol 10:537–549CrossRefPubMedGoogle Scholar
  16. Hewitt GM (2004a) Genetic consequences of climatic oscillation in the Quaternary. Phil Trans R Soc Lond B Biol Sci 359:183–195CrossRefGoogle Scholar
  17. Hewitt GM (2004b) The structure of biodiversity - insights from molecular phylogeography. Front Zool 1:4CrossRefPubMedGoogle Scholar
  18. Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 104:2785–2790CrossRefPubMedGoogle Scholar
  19. Holdhaus K (1954) Die Spuren der Eiszeit in der Tierwelt Europas. Abh zool-bot Ges Wien 18:1–493Google Scholar
  20. Holdhaus K, Lindroth CH (1939) Die europäischen Koleopteren mit boreoalpiner Verbreitung. Ann Nat Mus Wien 50:123–293Google Scholar
  21. Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Mol Ecol 12:931–949CrossRefPubMedGoogle Scholar
  22. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221CrossRefPubMedGoogle Scholar
  23. Malicky H (1983) Chorological patterns and biome types of European Trichoptera and other freshwater insects. Arch Hydrobiol 96:223–244Google Scholar
  24. Malicky H (2000) Arealdynamik und Biomgrundtypen am Beispiel der Köcherfliegen (Trichoptera). Entomol Basil 22:235–259Google Scholar
  25. Marusik YM, Hippa H, Koponen S (1996) Spiders (Araneae) from the Altai area, Southern Siberia. Acta Zool Fenn 201:11–45Google Scholar
  26. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an Eastern Alpine refugium. J Biogeogr 34:2100–2114CrossRefGoogle Scholar
  27. Müller P (1980) Biogeographie. UTB, Eugen Ulmer, StuttgartGoogle Scholar
  28. Muster C, Berendonk TU (2006) Divergence and diversity: lessons from an arctic-alpine distribution (Pardosa saltuaria group, Lycosidae). Mol Ecol 15:2921–2933CrossRefPubMedGoogle Scholar
  29. Muster C, Maddison WP, Uhlmann S, Berendonk TU, Vogler AP (2009) Arctic-Alpine distributions-metapopulations on a continental scale? Am Nat 173:313–326Google Scholar
  30. Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, StuttgartGoogle Scholar
  31. Pauls SU, Lumbsch HT, Haase P (2006) Phylogeography of the montane cadddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Mol Ecol 15:2153–2169CrossRefPubMedGoogle Scholar
  32. Ronikier M, Cies´lak E, Korbecka G (2008a) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Eastern Alps. Mol Ecol 17:1763–1775CrossRefPubMedGoogle Scholar
  33. Ronikier M, Costa A, Fuertes Aguilar J, Nieto Feliner G, Küpfer P, Mirek Z (2008b) Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J Biogeogr 35:1650–1664CrossRefGoogle Scholar
  34. Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front Zool 4:11CrossRefPubMedGoogle Scholar
  35. Schmitt T, Haubrich K (2008) The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and Postglacial history of the mountain forest biome in Europe. Mol Ecol 17:2194–2207CrossRefPubMedGoogle Scholar
  36. Schmitt T, Hewitt GM (2004) Molecular biogeography of the arctic-alpine disjunct burnet moth species Zygaena exulans (Zygaenidae, Lepidoptera) in the Pyrenees and Alps. J Biogeogr 31:885–893CrossRefGoogle Scholar
  37. Schmitt T, Hewitt GM, Müller P (2006) Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J Evol Biol 19:108–113CrossRefPubMedGoogle Scholar
  38. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial, Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732CrossRefGoogle Scholar
  39. Schönswetter P, Paun O, Tribsch A, Niklfeld H (2003) Out of the Alps: colonisation of the Arctic by East Alpine populations of Ranunculus glacialis (Ranunculaceae). Mol Ecol 12:3371–3381Google Scholar
  40. Schönswetter P, Popp M, Brochmann C (2006a) Central Asian origin of and strong genetic differentiation among populations of the rare and disjunct Carex atrofusca (Cyperaceae) in the Alps. J Biogeogr 33:948–956CrossRefGoogle Scholar
  41. Schönswetter P, Popp M, Brochmann C (2006b) Rare arctic-alpine plants of the European Alps have different immigration histories: the snowbed species Minuartia biflora and Ranunculus pygmaeus. Mol Ecol 15:709–720CrossRefPubMedGoogle Scholar
  42. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555CrossRefPubMedGoogle Scholar
  43. Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phyl Evol 42:92–103CrossRefGoogle Scholar
  44. Schönswetter P, Tribsch A, Niklfeld H (2004a) Amplified Fragment Length Polymorphism (AFLP) reveals no genetic divergence of the Eastern Alpine endemic Oxytropis campestris subsp. tiroliensis (Fabaceae) from widespread subsp. campestris. Plant Syst Evol 244:245–255CrossRefGoogle Scholar
  45. Schönswetter P, Tribsch A, Niklfeld H (2004b) Amplified fragment length polymorphism (AFLP) suggests old and recent immigration into the Alps by the arctic-alpine annual Comastoma tenellum (Gentianaceae). J Biogeogr 31:1673–1681CrossRefGoogle Scholar
  46. Schönswetter P, Tribsch A, Barfuss M, Niklfeld H (2002) Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium in the European Alps. Mol Ecol 11:2637–2647CrossRefPubMedGoogle Scholar
  47. Schönswetter P, Elven R, Brochmann C (2008) Trans-Atlantic dispersal and large-scale lack of genetic structure in the circumpolar, arctic-alpine sedge Carex bigelowii s. lat. (Cyperaceae). Am J Bot 95:1006–1014CrossRefGoogle Scholar
  48. Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Mol Ecol 15:827–1840CrossRefGoogle Scholar
  49. Sonderegger P (2005) Die Erebien der Schweiz. Selbstverlag, Biel/BienneGoogle Scholar
  50. Steward JR, Lister AM (2001) Cryptic Northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613CrossRefGoogle Scholar
  51. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss G, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus Willd. (Asteraceae). Am J Bot 94:1391–1401CrossRefGoogle Scholar
  52. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  53. Varga ZS (1971) Die Erebien (Lep.: Satyridae) der Balkanhalbinsel und der Karpaten III. Die Verbreitung und subspezifische Gliederung von Erebia pandrose (Bkh., 1788) nebst Beschreibung einer neuen Unterart: E. pandrose ambicolorata ssp. nova. Acta Biol Debrecina 9:227–235Google Scholar
  54. Varga ZS, Schmitt T (2008) Types of oreal and oreotundral disjunctions in the Western Palearctic. Biol J Linn Soc 93:415–430CrossRefGoogle Scholar
  55. Vierhapper F (1918) Juncus biglumis L. in den Alpen. Österr Bot Zeitschr 67:49–51CrossRefGoogle Scholar
  56. Williams D, Dunkerley D, DeDecker P, Kershaw P, Chappell M (1998) Quaternary environments. Arnold, LondonGoogle Scholar
  57. Wunderlich J (1984) Seltene und bisher unbekannte Wolfspinnen aus Mitteleuropa und revision der Pardosa saltuaria - Gruppe (Arachnida: Araneae: Lycosidae). Verh nat-wiss Ver Hamburg (NF) 27:417–442Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Schmitt
    • 1
    Email author
  • Christoph Muster
    • 2
  • Peter Schönswetter
    • 3
  1. 1.Department of BiogeographyTrier UniversityTrierGermany
  2. 2.Molecular Evolution and Animal Systematics, Institute of Zoology IIUniversity of LeipzigLeipzigGermany
  3. 3.Department of Plant Biogeography, Faculty Centre BiodiversityUniversity of ViennaWienAustria

Personalised recommendations