A Framework of Economic Traffic Management Employing Self-Organization Overlay Mechanisms

  • Simon Oechsner
  • Sergios Soursos
  • Ioanna Papafili
  • Tobias Hossfeld
  • George D. Stamoulis
  • Burkhard Stiller
  • Maria Angeles Callejo
  • Dirk Staehle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)


Applications based on overlays have become very popular, due to the separation they provide and the improvement of perceived QoS by the end-user. Recent studies show that overlays have a significant impact on the traffic management and the expenditures of the underlying network operators. In this paper, we define a framework for Economic Traffic Management (ETM) mechanisms that optimize the traffic impact of overlay applications on ISP and telecommunication operator networks based on the interaction of network operators, overlay providers and users. We first provide a definition and an overview of Self-Organization Mechanisms (SOMs) and ETM for overlays. We then describe a basic framework for the interaction of components of SOMs and ETM, in terms of information and metrics provided, decisions made etc. Finally, we describe in detail how SOMs can be used to support ETM and we illustrate our approach and its implications by means of a specific example.


Overlay Network Internet Service Provider Neighbor Selection Malicious Peer Download Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SmoothIT - Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies (2008),
  2. 2.
    Saroiu, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D., Levy, H.M.: An analysis of internet content delivery systems. SIGOPS Oper. Syst. Rev. 36 (2002)Google Scholar
  3. 3.
    Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Second Annual ACM Internet Measurement Workshop (2002)Google Scholar
  4. 4.
    Keralapura, R., Taft, N., Chuah, C.-N., Davis, U.C., Iannaccone, G.: Can isps take the heat from overlay networks? In: ACM SIGCOMM HotNets (2004)Google Scholar
  5. 5.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup service for internet applications. In: Proc. of SIGCOMM 2001 (2001)Google Scholar
  6. 6.
    Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Topology-aware routing in structured peer-to-peer overlay networks. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 103–107. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Mohapaira, P.: The impact of topology on overlay routing service. In: Proc. of INFOCOM 2004 (2004)Google Scholar
  8. 8.
    Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly constructed overlay routing networks. In: Proc. of INFOCOM 2004 (2004)Google Scholar
  9. 9.
    Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proc. of INFOCOM 2002 (2002)Google Scholar
  10. 10.
    Liu, Y., Liu, X., Xiao, L., Ni, L., Zhang, X.: Location-aware topology matching in p2p systems. In: Proc. of INFOCOM 2004 (2004)Google Scholar
  11. 11.
    Ganesan, P., Sun, Q., Garcia-Molina, H.: Apocrypha: Making P2P overlays network-aware. Technical report, Stanford University (2003)Google Scholar
  12. 12.
    Nakao, A., Peterson, L., Bavier, A.: A routing underlay for overlay networks. In: Proc. of SIGCOMM 2003 (2003)Google Scholar
  13. 13.
    Karagiannis, T., Rodriguez, P., Papagiannaki, K.: Should internet service providers fear peer-assisted content distribution? In: Proc. of IMC 2005 (2005)Google Scholar
  14. 14.
    Cohen, B.: Bittorrent protocol specification (2005),
  15. 15.
    Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of dht routing geometry on resilience and proximity. In: Proc. of SIGCOMM 2003 (2003)Google Scholar
  16. 16.
    Gimenez, J.P.F.P., Rodriguez, M.A.C., Hasan, H., Hoßfeld, T., Staehle, D., Despotovic, Z., Kellerer, W., Pussep, K., Papafili, I., Stamoulis, G.D., Stiller, B.: A new approach for managing traffic of overlay applications of the smoothIT project. In: Hausheer, D., Schönwälder, J. (eds.) AIMS 2008. LNCS, vol. 5127. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    ITU-T Rec. Y.1541: Network Performance objectives for IP based services (2006)Google Scholar
  18. 18.
    ETSI ES 282 003: Resource and Admission Control Sub-System (RACS): Functional Architecture (2008)Google Scholar
  19. 19.
    Xie, H., Yang, Y., Liu, Y., Krishnamurthy, A., Silberschatz, A.: P4P: Provider portal for applications. In: Proc. of SIGOMM 2008 (2008)Google Scholar
  20. 20.
    Qiu, D., Srikant, R.: Modeling and performance analysis of bittorrent-like peer-to-peer networks. SIGCOMM Comput. Commun. Rev. 34 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simon Oechsner
    • 1
  • Sergios Soursos
    • 2
  • Ioanna Papafili
    • 2
  • Tobias Hossfeld
    • 1
  • George D. Stamoulis
    • 2
  • Burkhard Stiller
    • 3
  • Maria Angeles Callejo
    • 4
  • Dirk Staehle
    • 1
  1. 1.Institute of Computer Science, Department of Distributed Systems, Am HublandUniversity of WürzburgWürzburgGermany
  2. 2.Department of InformaticsAthens University of Economics and BusinessAthensGreece
  3. 3.University of Zürich, CSG@IFIZürichSwitzerland
  4. 4.Telefonica Investigacion y DesarrolloMadridSpain

Personalised recommendations