Advertisement

A Self-Organizing Super-Peer Overlay with a Chord Core for Desktop Grids

  • Peter Merz
  • Steffen Wolf
  • Dennis Schwerdel
  • Matthias Priebe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)

Abstract

We present a self-organizing super-peer overlay that suits the communication requirements of a Peer-to-Peer Desktop Grid system well. This overlay combines favorable properties of Chord rings and fully meshed super-peer networks, yielding benefits that include an efficient broadcast scheme and a reduced average message hop count compared to pure Chord. To this end, we introduce a distributed algorithm that sets up such an overlay in a self-organized way. Moreover, we deploy network coordinates to improve Chord’s end-to-end message routing delay and build a deterministic gossip mechanism over the Chord ring’s fingers. We demonstrate the effectiveness of our concept through simulations using topology information retrieved from PlanetLab.

Keywords

Overlay Network Desktop Grid Message Delay Chord Ring Desktop Grid System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.P., Fedak, G.: The Computational and Storage Potential of Volunteer Computing. In: Proceedings of the 6th International Symposium on Cluster Computing and the Grid (CCGrid 2006), pp. 73–80 (2006)Google Scholar
  2. 2.
    Andrade, N., Brasileiro, F.V., Cirne, W., Mowbray, M.: Automatic grid assembly by promoting collaboration in Peer-to-Peer grids. Journal of Parallel and Distributed Computing 67(8), 957–966 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chakravarti, A.J., Baumgartner, G., Lauria, M.: The organic grid: self-organizing computation on a Peer-to-Peer network. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(3), 373–384 (2005)CrossRefGoogle Scholar
  4. 4.
    Kondo, D., Taufer, M., Brooks, C.L., Casanova, H., Chien, A.A.: Characterizing and Evaluating Desktop Grids: An Empirical Study. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, IPDPS 2004 (2004)Google Scholar
  5. 5.
    Iamnitchi, A., Foster, I.T.: A Peer-to-Peer Approach to Resource Location in Grid Environments. In: Nabrzynski, J., Schopf, J.M., Weglarz, J. (eds.) Grid resource management: state of the art and future trends, pp. 413–429. Kluwer, Dordrecht (2004)CrossRefGoogle Scholar
  6. 6.
    Jesi, G.P., Montresor, A., Babaoglu, Ö.: Proximity-Aware Superpeer Overlay Topologies. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS, vol. 3996, pp. 43–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proceedings of the 19th International Conference on Data Engineering, pp. 49–62 (2003)Google Scholar
  8. 8.
    Zöls, S., Despotovic, Z., Kellerer, W.: On hierarchical DHT systems - An analytical approach for optimal designs. Computer Communications 31(3), 576–590 (2008)CrossRefGoogle Scholar
  9. 9.
    Gummadi, P.K., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica, I.: The impact of DHT routing geometry on resilience and proximity. In: Proceedings of SIGCOMM, pp. 381–394 (2003)Google Scholar
  10. 10.
    Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. In: Communications Surveys & Tutorials, vol. 7(2), pp. 72–93. IEEE, Los Alamitos (2005)Google Scholar
  11. 11.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F.M., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proceedings of SIGCOMM, pp. 149–160 (2001)Google Scholar
  12. 12.
    Cox, R., Dabek, F., Kaashoek, M.F., Li, J., Morris, R.: Practical, distributed network coordinates. ACM SIGCOMM Computer Communication Review 34(1), 113–118 (2004)CrossRefGoogle Scholar
  13. 13.
    Merz, P., Priebe, M., Wolf, S.: Super-Peer Selection in Peer -to- Peer Networks Coordinates. In: Proceedings of the 3rd International Conference on Internet and Web Applications and Services (ICIW 2008), pp. 385–390. IEEE Computer Soceity, Los Alamitos (2008)CrossRefGoogle Scholar
  14. 14.
    Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.I.T.: Topology-aware routing in structured peer-to-peer overlay networks. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 103–107. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient Broadcast in Structured P2P Networks. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 304–314. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Merz, P., Gorunova, K.: Efficient Broadcast in P2P Grids. In: Proceedings of the 5th International Symposium on Cluster Computing and the Grid (CCGrid 2005), pp. 237–242 (2005)Google Scholar
  17. 17.
    Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–12 (1987)Google Scholar
  18. 18.
    Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for mobile computers. In: Proceedings of SIGCOMM, pp. 234–244 (1994)Google Scholar
  19. 19.
    Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communication Review 33(3), 3–12 (2003)CrossRefGoogle Scholar
  20. 20.
    Banerjee, S., Griffin, T.G., Pias, M.: The Interdomain Connectivity of PlanetLab Nodes. In: Barakat, C., Pratt, I. (eds.) Proceedings of the 5th International Workshop on Passive and Active Network Measurement (2004)Google Scholar
  21. 21.
    Sistla, K., George, A.D., Todd, R.W.: Experimental analysis of a gossip-based service for scalable, distributed failure detection and consensus. Journal of Cluster Computing 6(3), 237–251 (2003)CrossRefGoogle Scholar
  22. 22.
    Kleis, M., Lua, E.K., Zhou, X.: Hierarchical Peer-to-Peer networks using lightweight superpeer topologies. In: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005), pp. 143–148 (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Merz
    • 1
  • Steffen Wolf
    • 1
  • Dennis Schwerdel
    • 1
  • Matthias Priebe
    • 1
  1. 1.Distributed Algorithms GroupUniversity of KaiserslauternGermany

Personalised recommendations