Advertisement

Weather Disruption-Tolerant Self-Optimising Millimeter Mesh Networks

  • Abdul Jabbar
  • Bharatwajan Raman
  • Victor S. Frost
  • James P. G. Sterbenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)

Abstract

Millimeter-wave networks have the potential to supplement fiber in providing high-speed Internet access, as well as backhaul for emerging mobile 3G and 4G services. However, due to the high frequency of operation (70–90 GHz), such networks are highly susceptible to attenuation from rain. In this paper, we present several mechanisms to overcome the disruptive effects of rain storms on network connectivity and service reliability. A resilient mesh topology with cross-layering between the physical and network layer has the capability to self-optimise under the presence of unstable links. We present a novel domain-specific predictive routing algorithm P-WARP that uses real-time radar data to dynamically route traffic around link failures as well as a modified link-state algorithm XL-OSPF that uses cross-layering to achieve resilient routing. Simulations are conducted to evaluate the effectiveness of the proposed algorithms.

Keywords

Resilient survivable weather disruption tolerant millimeter-wave mesh network predictive routing self-optimising 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ANSI T1.105.01: Telecommunications – synchronous optical network (SONET) – automatic protection switching. American National Standard T1.105.01-2000 (March 2000)Google Scholar
  2. 2.
    ITU-T G.841: Types and characteristics of SDH network protection architectures. ITU-T Recommendation G.841Google Scholar
  3. 3.
    Uchida, D., Sugita, M., Toyoda, I., Atsugi, T.: Mesh-type broadband fixed wireless access system. NTT Technical Review 2(1), 44–54 (2004)Google Scholar
  4. 4.
    Wu, Y., Hui, J., Sun, H.: Fast restoring Gigabit wireless networks using a directional mesh architecture. Computer Communications 26, 1957–1964 (2003)CrossRefGoogle Scholar
  5. 5.
    Whitehead, P.: Mesh networks: A new architecture for broadband wireless access systems. In: IEEE Radio and Wireless Conference, Denver, CO, USA, pp. 43–46 (September 2000)Google Scholar
  6. 6.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: A survey. Computer Networks 47(4), 445–487 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    ITU-R F.1704: Characteristics of multipoint-to-multipoint fixed wireless systems with mesh network topology operating in frequency bands above about 17 GHz. ITU-R Recommendation F.1704 (2005)Google Scholar
  8. 8.
    Khan, J.A., Alnuweiri, H.M.: Traffic engineering with distributed dynamic channel allocation in BFWA mesh networks at millimeter wave band. In: Proceedings of the 14th IEEE Workshop on Local and Metropolitan Area Networks, Chania, Greece, pp. 1–6 (September 2005)Google Scholar
  9. 9.
    Ohata, K., Maruhashi, K., Ito, M., Nishiumi, T.: Millimeter-wave broadband transceivers. NEC Journal of Advanced Technology 2(3), 211–216 (2005)Google Scholar
  10. 10.
    Torkildson, E., Ananthasubramaniam, B., Madhow, U., Rodwell, M.: Millimeter-wave MIMO: Wireless Links at Optical Speeds. In: Proceedings of the 44th Allerton Conference on Communication, Control and Computing, Monticello, Illinois, USA (September 2006)Google Scholar
  11. 11.
    Izadpanah, H.: A millimeter-wave broadband wireless access technology demonstrator for the next-generation internet network reach extension. IEEE Communications Magazine, 140–145 (September 2001)Google Scholar
  12. 12.
    Hendrantoro, G., Indrabayu, Suryani, T., Mauludiyanto, A.: A multivariate autoregressive model of rain attenuation on multiple short radio links. IEEE Antennas and Propagation Letters 5, 54–57 (2006)CrossRefGoogle Scholar
  13. 13.
    Paulson, K.S., Gibbins, C.J.: Rain models for the prediction of fade durations at millimetre wavelengths. IEE Proceedings - Microwaves, Antennas and Propagation 147(6), 431–436 (2000)CrossRefGoogle Scholar
  14. 14.
    Tucker, D.F., Li, X.: Characteristics of warm season precipitating storms in the Arkansas-Red river basin. Journal of Geophysical Research (submitted, 2009)Google Scholar
  15. 15.
    Hou, P., Zhuang, J., Zhang, G.: A rain fading simulation model for broadband wireless access channels in millimeter wavebands. In: Proceedings of the IEEE Vehicular Technology Conference, Tokyo, Japan, May 2000, vol. 3, pp. 2559–2563 (Spring 2000)Google Scholar
  16. 16.
    Crane, R.: Prediction of Attenuation by Rain. IEEE Transactions on Communications 28(9), 1717–1733 (1980)CrossRefGoogle Scholar
  17. 17.
    ITU-R P.530: Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. ITU-R Recommendation P.530Google Scholar
  18. 18.
    Folies, J., Raman, B., Jabbar, A., Smith, D., DePardo, D., Sterbenz, J.P., Tucker, D., Euler, T., Frost, V.S.: Experience with frame transfer over a millimeter-wave link. IEEE Communication Letters (submitted, 2008)Google Scholar
  19. 19.
    Waharte, S., Boutaba, R., Iraqi, Y., Ishibashi, B.: Routing protocols in wireless mesh networks: challenges and design considerations. Multimedia Tools Appl. 29(3), 285–303 (2006)CrossRefGoogle Scholar
  20. 20.
    Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for static multi-hop wireless networks. SIGCOMM Computer Communications Review 34(4), 133–144 (2004)CrossRefGoogle Scholar
  21. 21.
    Yang, Y., Wang, J., Kravets, R.: Designing routing metrics for mesh networks. In: WiMesh 2005: Proceedings of the IEEE Workshop on Wireless Mesh Networks (2005)Google Scholar
  22. 22.
    Ramachandran, K., Sheriff, I., Belding, E., Almeroth, K.: Routing stability in static wireless mesh networks. In: Proceedings of the eighth Passive and Active Measurement conference, Louvain-la-neuve, Belgium (April 2007)Google Scholar
  23. 23.
    Kim, B.C., Lee, H.S.: Performance comparison of route metrics for wireless mesh networks. IEICE Transactions on Communications 89(11), 3124–3127 (2006)CrossRefGoogle Scholar
  24. 24.
    Moy, J.: OSPF version 2. RFC 2328 (Standard) (April 1998)Google Scholar
  25. 25.
    Chandra, M., Roy, A.: Extensions to OSPF to support mobile ad hoc networking. Internet-Draft, draft-ietf-ospf-manet-or-00, Work in progress (February 2008)Google Scholar
  26. 26.
    Spagnolo, P., Henderson, T.: Comparison of proposed OSPF MANET extensions. In: Proceedings of the IEEE Military Communications Conference, Washington, DC, USA, pp. 1–7 (October 2006)Google Scholar
  27. 27.
    Iannone, L., Khalili, R., Salamatian, K., Fdida, S.: Cross-layer routing in wireless mesh networks. In: Proceedings of the 1st International Symposium on Wireless Communication Systems, pp. 319–323 (2004)Google Scholar
  28. 28.
    Pei, G., Spagnolo, P.A., Bae, S., Henderson, T.R., Kim, J.H.: Performance improvements of OSPF MANET extensions: A cross layer approach. In: Proceedings of IEEE Military Communications Conference, Florida, USA, pp. 1–7 (October 2007)Google Scholar
  29. 29.
    Cisco: Cisco IOS IP Command Reference, vol. 2, 4: Routing Protocols. Cisco Systems, Inc. Release 12.3(11)T edn. (2008)Google Scholar
  30. 30.
    Ns-2: The network simulator (July 2008), http://www.isi.edu/nsnam/ns/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Abdul Jabbar
    • 1
  • Bharatwajan Raman
    • 1
  • Victor S. Frost
    • 1
  • James P. G. Sterbenz
    • 1
  1. 1.Information and Telecommunication Technology CenterThe University of KansasLawrenceUSA

Personalised recommendations