A Self-powered Module with Localization and Tracking System for Paintball

  • Andrey Somov
  • Vinay Sachidananda
  • Roberto Passerone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)


In spite of the popularity of wireless sensor networks (WSN), their application scenarios are still scanty. In this paper we apply the WSN paradigm to the entertainment area, and in particular to the domain of Paintball. This niche scenario poses challenges in terms of player localization and wireless sensor node lifetime. The main goal of localization in this context is to locate and track the player in order to facilitate his/her orientation, and to increase the level of safety. Long term operation could be achieved by adopting appropriate hardware components, such as storage elements, harvesting component, and a novel circuit solution. In this work we present a decentralized localization and tracking system for Paintball and describe the current status of the development of a self-powered module to be used between a wireless node and an energy harvesting component.


Wireless Sensor Network Mobile Node Receive Signal Strength Indication Wireless Sensor Node Beacon Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ohta, Y., Sugano, M., Murata, M.: Autonomous localization method in wireless sensor networks. In: Pervasive Computing and Communication Workshops, March 8-12 (2005)Google Scholar
  2. 2.
    Torah, R.N., Tudor, M.J., Patel, K., Garcia, I.N., Beeby, S.P.: Autonomous low power microsystem powered by vibration energy harvesting. In: 6th annual IEEE Conference on Sensors, Atlanta, USA, October 28-31 (2007)Google Scholar
  3. 3.
    Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. IEEE SPOTS (2005)Google Scholar
  4. 4.
    Jiang, X., Polastre, J., Culler, D.: Perpetual environmentally powered sensor networks. IEEE SPOTS (April 2005)Google Scholar
  5. 5.
    Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse, K., Culler, D.: Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. IEEE SPOTS (2006)Google Scholar
  6. 6.
    Localization with GPS. From GPS Theory and Practice, 5th edn. (2005)Google Scholar
  7. 7.
    Polastre, Szewczyk, R., Culler, D.: Enabling ultra-low power wireless research. IEEE SPOTS (2005)Google Scholar
  8. 8.
    Dutta, P., Grimmer, M., Arora, A., Bibyk, S., Culler, D.: Design of a wireless sensor network platform for detecting rare, random and ephemeral events. IEEE IPSN (2005)Google Scholar
  9. 9.
  10. 10.
  11. 11.
    Panasonic Industrial (June 2008),
  12. 12.
    Lorincz, K., Welsh, M.: A robust, decentralized approach to RF-based location tracking. Technical Report TR-19-04, Harvard University (2004)Google Scholar
  13. 13.
    Capkun, S., Hamdi, M., Hubaux: GPS-free positioning in mobile ad-hoc networks. System Sciences. In: Proceedings of the 34th Annual Hawaii International Conference, Fed. de Lausanne, Switzerland (2001)Google Scholar
  14. 14.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system. In: Proceedings of the 6th annual International Conference on Mobile Computing and Networking (2000)Google Scholar
  15. 15.
    Using TREMATE. TRETEC S.r.l., Trento, ItalyGoogle Scholar
  16. 16.
    van Greunen, J.: Services in sensor networks. Master thesis, University of California, Berkley (2003)Google Scholar
  17. 17.
    Harter, Hopper, A., Steggles, P., Ward, A., Webster, P.: The Anatomy of a Context-Aware Application. In: 5th ACM MOBICOM, Seattle, WA (August 1999)Google Scholar
  18. 18.
    Analog Devices (June 2008),
  19. 19.
    CC1000 Description (June 2008),
  20. 20.
  21. 21.
    Perpetuum (December 2007),
  22. 22.
    Ergen, S.C.: ZigBee/IEEE 802.15.4 Summary (2004)Google Scholar
  23. 23.
    David, G., Levis, P., Culler, D., Brewer, E.: nesC 1.1 Language Reference Manual (May 2003)Google Scholar
  24. 24.
  25. 25.
    Lorincz, K., Welsh, M.: MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-based User Location and Tracking System. In: Infocom 2000 (2000)Google Scholar
  27. 27.
    Ekahau positioning engine (September 2008),
  28. 28.
    McNally, R., Arvind, D.: A Distributed Leaderless Algorithm for Location Discovery in Specknets. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    MAXIM (June 2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrey Somov
    • 1
  • Vinay Sachidananda
    • 2
  • Roberto Passerone
    • 1
  1. 1.University of TrentoTrentoItaly
  2. 2.Darmstadt University of TechnologyDarmstadtGermany

Personalised recommendations