On Autonomy and Emergence in Self-Organizing Systems

  • Richard Holzer
  • Hermann de Meer
  • Christian Bettstetter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)


For analyzing properties of complex systems, a mathematical model for these systems is useful. In this paper we describe how discrete complex systems can be modeled mathematically and we give a framework for the analysis of the system with respect to the properties autonomy and emergence, which are two of the most important properties of self-organizing systems. The modeling is done by using a multigraph to describe the connections between objects and stochastic automatons for the behavior of the objects.


Self-Organziation Autonomy Emergence Mathematical modeling Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Meer, H., Koppen, C.: Characterization of self-organization. In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp. 227–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Heylighen, F.P.: The science of self-organization and adaptivity. In: Kiel, L.D. (ed.) Knowledge Management, Organizational Intelligence and Learning, and Complexity, The Encyclopedia of Life Support Systems. EOLSS Publishers (2003)Google Scholar
  3. 3.
    Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, Chichester (1977)zbMATHGoogle Scholar
  4. 4.
    Haken, H.: Synergetics and the Problem of Selforganization. In: Self-organizing Systems: An Interdisciplinary Approach, pp. 9–13. Campus Verlag (1981)Google Scholar
  5. 5.
    Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Wisconsin-Madison (2001)Google Scholar
  6. 6.
    von Foerster, H.: On Self-Organizing Systems and their Environments. In: Self-Organizing Systems, pp. 31–50. Pergamon, Oxford (1960)Google Scholar
  7. 7.
    Ashby, W.R.: Principles of Self-organization. In: Principles of Self-organization, pp. 255–278. Pergamon, Oxford (1962)Google Scholar
  8. 8.
    Heylighen, F., Joslyn, C.: Cybernetics and second order cybernetics. In: Encyclopaedia of Physical Science & Technology, vol. 4, pp. 155–170 (2001)Google Scholar
  9. 9.
    Gershenson, C.: Design and Control of Self-organizing Systems. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium (May 2007)Google Scholar
  10. 10.
    Boccara, N.: Modeling Complex Systems. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  11. 11.
    Holzer, R., de Meer, H.: On modeling of self-organizing systems. In: Autonomics 2008 (2008)Google Scholar
  12. 12.
    Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S.K., Rana, O.F., Ulieru, M., Valckenaers, P., Van Aart, C.: Self-organisation: Paradigms and applications. In: ESOA 2003. LNCS, vol. 2977, pp. 1–19. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Gerhenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Chichester (2006)zbMATHGoogle Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dessalles, J.L., Phan, D.: Emergence in multi-agent systems:cognitive hierarchy, detection, and complexity reduction. In: Computing in Economics and Finance 2005, vol. 257. Society for Computational Economics (November 2005)Google Scholar
  17. 17.
    Tyrrell, A., Auer, G., Bettstetter, C.: Biologically inspired synchronization for wireless networks. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems: Models, Methods, and Tools. Studies in Computational Intelligence, vol. 69, pp. 47–62. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  18. 18.
    Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM Journal of Applied Mathematics 50, 1645–1662 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Richard Holzer
    • 1
  • Hermann de Meer
    • 1
  • Christian Bettstetter
    • 2
  1. 1.Faculty of Informatics and MathematicsUniversity of PassauPassauGermany
  2. 2.Institute of Networked and Embedded Systems, Mobile Systems GroupUniversity of KlagenfurtKlagenfurtAustria

Personalised recommendations