Self-Organization for Fault-Tolerance

  • Elena Dubrova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)


In the last decade, there has been a considerable increase of interest in fault-tolerant computing due to dependability problems related to process scaling, embedded systems, and ubiquitous computing. In this paper, we present an approach to fault-tolerance inspired by gene regulatory networks of living cells. Living cells are capable of maintaining their functionality under a variety of genetic changes and external perturbations. They have natural self-healing, self-maintaining, self-replicating, and self-assembling mechanisms. The fault-tolerance of living cells is due to the ability of their gene regulatory network to self-organize and produce a stable attractors’ landscape. We introduce a computational scheme which exploits the intrinsic stability of attractors to achieve fault-tolerant computation. We also test fault-tolerance of the presented scheme on the example of a gene regulatory network model of Arabidopsis thaliana and show that it can tolerate 68% single-point mutations in the outputs of the defining tables of gene functions.


Boolean Function Gene Regulatory Network Ubiquitous Computing Boolean Network Soft Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terrestrial cosmic rays and soft errors. IBM Journal of Research and Development, 40(1) (1996)Google Scholar
  2. 2.
    Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alberts, B., Bray, D., Lewis, J., Ra, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, New York (1994)Google Scholar
  5. 5.
    Aldana, M., Balleza, E., Kauffman, S., Resendis, O.: Robustness and evolvability in gene regulatory networks. J. Theor. Biol. 245, 433–448 (2007)CrossRefGoogle Scholar
  6. 6.
    Aldana, M., Coopersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings,
  7. 7.
    Balleze, E., Alvarez-Buylla, E., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: Examples from four kingdoms,
  8. 8.
    Bastola, U., Parisi, G.: The critical line of Kauffman networks. J. Theor. Biol. 187, 117 (1997)CrossRefGoogle Scholar
  9. 9.
    Baumann, R.: Soft errors in advanced comuter systems. IEEE Design and Test of Comuters 22(3), 258–266 (2005)CrossRefGoogle Scholar
  10. 10.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 677–691 (1986)zbMATHGoogle Scholar
  11. 11.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  12. 12.
    Chaos, A., Aldana, M., Espinosa-Soto, C., de Leon, B.G.P., Arroyo, A.G., Alvarez-Buylla, E.R.: From genes to flower patterns and evolution: Dynamic models of gene regulatory networks. Journal of Plant Growth Regulation 25(4), 278–289 (2006)CrossRefGoogle Scholar
  13. 13.
    Chaves, M., Sontag, E.D., Albert, R.: Methods of robustness analysis for Boolean models of gene control networks. IEE Proceedings of Systems Biology 153, 154–167 (2006)CrossRefGoogle Scholar
  14. 14.
    Dubrova, E., Teslenko, M.: Compositional properties of Random Boolean Networks. Physical Review E 71, 056116 (May 2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dubrova, E., Teslenko, M., Martinelli, A.: Kauffman networks: Analysis and applications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 479–484 (November 2005)Google Scholar
  16. 16.
    Dubrova, E., Teslenko, M., Tenhunen, H.: A computational model based on random Boolean networks. In: BIONETICS 2007 (2007)Google Scholar
  17. 17.
    Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant Cell 16, 2923–2939 (2004)CrossRefGoogle Scholar
  18. 18.
    Flyvbjerg, H., Kjaer, N.J.: Exact solution of Kauffman model with connectivity one. J. Phys. A: Math. Gen. 21, 1695 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gershenson, C.: Updating schemes in random Boolean networks: Do they really matter? In: Proceedings of the Ninth International Conference on the Simulation and Syuntheis of Living Systems, pp. 238–243 (2004)Google Scholar
  20. 20.
    Glass, L., Hill, C.: Ordered and disordered dynamics in random networks. Europhysics Letter 12, 599–604 (1998)CrossRefGoogle Scholar
  21. 21.
    Huang, S., Eichler, G., Ber-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional sttractor states of a complex gene regulatory network. Physical Rev. Let. 94, 128701–128704 (2005)CrossRefGoogle Scholar
  22. 22.
    Huang, S., Ingber, D.E.: Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research 261, 91–103 (2000)CrossRefGoogle Scholar
  23. 23.
    Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356 (1961)CrossRefGoogle Scholar
  24. 24.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection of Evolution. Oxford University Press, Oxford (1993)Google Scholar
  26. 26.
    Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2002)Google Scholar
  27. 27.
    Luque, B., Sole, R.V.: Stable core and chaos control in random Boolean networks. Journal of Physics A: Mathematical and General 31, 1533–1537 (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    Meindl, J.D., Chen, Q., Davis, J.A.: Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001)CrossRefGoogle Scholar
  29. 29.
    Mendoza, L., Alvarez-Buylla, E.R.: Genetic regulation of root hair development in Arabidopsis thaliana: A network model. J. Theor. Biol. 204, 311–326 (2000)CrossRefGoogle Scholar
  30. 30.
    Nykter, M., Price, N.D., Aldana, M., Ramsey, S.A., Kauffman, S.A., Hood, L.E., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. U.S.A. 105(6), 1897–1900 (2008)CrossRefGoogle Scholar
  31. 31.
    Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 6, S9 (2007)CrossRefGoogle Scholar
  32. 32.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)CrossRefzbMATHGoogle Scholar
  33. 33.
    von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–193 (2000)CrossRefGoogle Scholar
  34. 34.
    Wagner, A.: Robustness and evolvability in living systems. Oxford University Press, Oxford (2007)Google Scholar
  35. 35.
    Weiser, M.: Some computer science problems in ubiquitous computing. Communications of the ACM 36(7), 74–83 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Elena Dubrova
    • 1
  1. 1.Department of Electronics, Computers, and Software, Royal Institute of TechnologyKistaSweden

Personalised recommendations