Advertisement

Self-Organizing Multirobot Exploration through Counter-Ant Algorithm

  • Ilhem Kallel
  • Abdelhak Chatty
  • Adel M. Alimi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5343)

Abstract

This paper presents an evolving method for a self-organizing multirobot exploration of an unknown environment. In such problem, a big consideration is given to the coordination behavior of robots in order to achieve the common tasks in an optimal way. Ant algorithms are proved to be very useful in solving such distributed control problems. We present here a modified version of the known ant algorithm, called Counter-Ant Algorithm (CAA). Indeed, the robots’collective behavior is based on repulsion instead of attraction to pheromone, which is a chemical matter open to evaporation and representing the core of ants’ cooperation. A series of experimentations with MINDSTORMS LEGO robots, and simulations under Madkit platform, in laboratory conditions similar to real ones, show the usefulness of our algorithm for self-organizing and cooperative exploration.

Keywords

Counter-Ant algorithm self-organizing multirobot cooperative exploration pheromone stagnation recovery Lego robots Madkit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borzello, E., Merkle, L.D.: Multi-Robot Cooperation Using the Ant Algorithm with Variable Pheromone Placement. Proceedings of the IEEE (2005)Google Scholar
  2. 2.
    Casillas, J., Cordón, O., Fernández de Viana, I., Herrera, F.: Learning cooperative linguistic fuzzy rules using the best-worst ant system algorithm. International Journal of Intelligent Systems 20(4) (2005)Google Scholar
  3. 3.
    Cao, Y.U., Fukunaga, A.S., Khang, A.B.: Cooperative mobile robotics: antecedents and directions. Autonomous Robots 4(1), 7–27 (1997)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., DiCaro, G.: The Ant Colony Optimization Meta-Heuristic, New Ideas in Optimization 1999. McGraw-Hill, New York (1999)Google Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant colony optimization. The MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots, Intelligent Robots and Systems. In: IROS 1993. Proc. of the 1993 IEEE/RSJ, July 1993, vol. 1, pp. 441–447 (1993)Google Scholar
  7. 7.
    Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artificial Life 5(2), 173–202 (1999)CrossRefGoogle Scholar
  8. 8.
    Johnson, J., Sugisaka, M.: Complexity science for the design of swarm robot control systems, Industrial Electronics Society. In: IECON 2000. 26th Annual Conference of the IEEE, vol. 1, pp. 695–700 (October 2000)Google Scholar
  9. 9.
    Kallel, I., Mezghani, S., Alimi, A.M.: Towards a Fuzzy Evaluation of the Adaptivity Degree of an Evolving Agent. In: Proc. of the 3rd International Workshop IEEE GEFS, March 2008, pp. 29–34 (2008)Google Scholar
  10. 10.
    Kasabov, N., Filev, D.: Evolving intelligent systems: methods, learning, applications. In: Proc. Int. Symposium on Evolving Fuzzy Systems EFS, pp. 8–18 (2006)Google Scholar
  11. 11.
    Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and Autonomous Systems 30, 85–101 (2000)CrossRefGoogle Scholar
  12. 12.
    Kube, C.R., Zhang, H.: Collective robotics: From social insects to robots. Adaptive Behavior 2, 189–218 (1994)CrossRefGoogle Scholar
  13. 13.
    Kube, C.R., Zhang, H.: Stagnation recovery behaviors for collective robotics. In: Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, pp. 1883–1890. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  14. 14.
    Lund, H.H.: Adaptive robotics in entertainment. Applied Soft. Computing (2001)Google Scholar
  15. 15.
    Lund, H.H., Pagliarini, L.: RoboCup with LEGO MINDSTORMS. In: Proceedings of the International Conference on Robotics and Automation (ICRA 2000). IEEE Press, Los Alamitos (2000)Google Scholar
  16. 16.
    Mamei, M., Zambonelli, F.: Pervasive Pheromone-Based Interaction with RFID Tags. ACM Transactions on Autonomous and Adaptive Systems 2(2), 1–28 (2007)CrossRefGoogle Scholar
  17. 17.
    Parker, L.: ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)CrossRefGoogle Scholar
  18. 18.
    Purnamadjaja, A.H., Russell, R.A.: Pheromone communication: implementation of necrophoric bee behaviour in a robot swarm. In: Robotics, Automation and Mechatronics, vol. 2, pp. 638–643. IEEE, Los Alamitos (2004)Google Scholar
  19. 19.
    Szu, H., Chanyagorn, P., Hwang, W., Paulin, M., Yamakawa, T.: Collective and distributive swarm intelligence: evolutional biological survey. International Congress Series, August 2004, vol. 1269, pp. 46–49 (2004)Google Scholar
  20. 20.
    Yingying, D., Yan, H., Jingping, J.: Multi-Robot Cooperation Method Based On The Ant Algorithm. Proc. of the IEEE (2003)Google Scholar
  21. 21.
    Zhang, D., Xie, G., Yu, J., Wang, L.: Adaptive task assignment for multiple mobile robots via swarm intelligence approach. Robotics and Autonomous Systems 55(7), 572–588 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ilhem Kallel
    • 1
    • 2
  • Abdelhak Chatty
    • 1
    • 2
  • Adel M. Alimi
    • 1
  1. 1.REGIM, Research Group on Intelligent Machines, National School of EngineersUniversity of SfaxTunisia
  2. 2.High Institute of Computer Science and ManagementUniversity of KairouanTunisia

Personalised recommendations