Advertisement

Abstract

Discrete Set Handling and its application to permutative problems is presented in this chapter. Discrete Set is applied to Differential Evolution Algorithm, in order to enable it to solve strict-sence combinatorial problems. In addition to the theoretical framework and description, benchmark Flow Shop Scheduling and Traveling Salesman Problems are solved. The results are compared with published literature to illustrate the effectiveness of the developed approach. Also, general applications of Discrete Set Handling to Chaotic, non-linear and symbolic regression systems are given.

Keywords

Genetic Algorithm Local Search Differential Evolution Travel Salesman Problem Flow Shop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bland, G., Shallcross, D.: Large traveling salesman problems arising fromexperiments in Xray crystallography: A preliminary report on computation. OpersRes. Lett. 8, 125–128 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Croes, G.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Davendra, D., Onwubolu, G.: Enhanced Differential Evolution hybrid Scatter Search for Discrete Optimisation. In: Proceeding of the IEEE Congress on Evolutionary Computation, Singapore, September 25-28, pp. 1156–1162 (2007)Google Scholar
  4. 4.
    Dorigo, M., Gambardella, M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  5. 5.
    Flood, M.: The traveling-salesman problem. Oper. Res. 4, 61–75 (1956)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Johnson, G.: Artificial immune systems programming for symbolic regression. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 345–353. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Korte, B.: Applications of combinatorial optimization. In: The 13th International Mathematical Programming Symposium, Tokyo (1988)Google Scholar
  8. 8.
    Koza, J.: Genetic Programming: A paradigm for genetically breeding populations of computer programs to solve problems. Stanford University, Computer Science Department, Technical Report STAN-CS-90-1314 (1990)Google Scholar
  9. 9.
    Koza, J.: Genetic Programming. MIT Press, Boston (1998)Google Scholar
  10. 10.
    Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III. Morgan Kaufnamm, New York (1999)zbMATHGoogle Scholar
  11. 11.
    Koza, J., Keane, M., Streeter, M.: Evolving inventions. Sci. Am., 40–47 (February 2003)Google Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NPCompleteness. W. H. Freeman, San Francisco (1979)Google Scholar
  13. 13.
    O’Neill, M., Ryan, C.: Grammatical Evolution. In: Evolutionary Automatic Programming in an Arbitrary Language. Springer, New York (2003)Google Scholar
  14. 14.
    O’Neill, M., Brabazon, A.: Grammatical Differential Evolution. In: Proc. International Conference on Artificial Intelligence (ICAI 2006), pp. 231–236. CSEA Press (2006)Google Scholar
  15. 15.
    Oplatkova, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In: Proc. Genetic and Evolutionary Computation Conference 2006, Seattle, WA, pp. 949–950 (2006)CrossRefGoogle Scholar
  16. 17.
    Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice Hall, Inc., New Jersey (1995)zbMATHGoogle Scholar
  17. 18.
    Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimisation, pp. 79–108. McGraw Hill, International (1999)Google Scholar
  18. 19.
    Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, p. 83. Springer, Heidelberg (1998)Google Scholar
  19. 20.
    Lin, S., Kernighan, B.: An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Oper. Res. 21, 498–516 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 21.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)zbMATHCrossRefGoogle Scholar
  21. 22.
    Tasgetiren, M., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: Differential Evolution Algorithm for Permutative Flowshops Sequencing Problem with Makespan Criterion. In: 4th International Symposium on Intelligent Manufacturing Systems. IMS 2004, Sakaraya, Turkey, September 5-8, pp. 442–452 (2004)Google Scholar
  22. 24.
    Zelinka, I.: Analytic programming by Means of new evolutionary algorithms. In: Proc. 1st International Conference on New Trends in Physics 2001, Brno, Czech Republic, pp. 210–214 (2001)Google Scholar
  23. 25.
    Zelinka, I.: Analytic programming by means of soma algorithm. In: ICICIS 2002, First International Conference on Intelligent Computing and Information Systems, Cairo, Egypt, pp. 148–154 (2002)Google Scholar
  24. 26.
    Zelinka, I., Oplatkova, Z.: Analytic programming-Comparative study. In: Proc. the Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems, Singapore, paper No. PS04-2-04 (2003)Google Scholar
  25. 27.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-Symbolic regression by means of arbitrary evolutionary algorithms. Int. J. Simulat. Syst. Sci. Tech. 6(9), 44–56 (2005)Google Scholar
  26. 28.
    Zelinka, I., Chen, G., Celikovsky, S.: Chaos sythesis by menas of evolutionary algorithms. Int. J. Bifurcat Chaos 4, 911–942 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivan Zelinka
    • 1
  1. 1.Tomas Bata Univerzity in ZlinFaculty of Applied InformaticsZlinCzech Republic

Personalised recommendations